Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 35
1.
Environ Sci Technol ; 58(22): 9591-9600, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38759639

Methane is a major contributor to anthropogenic greenhouse gas emissions. Identifying large sources of methane, particularly from the oil and gas sectors, will be essential for mitigating climate change. Aircraft-based methane sensing platforms can rapidly detect and quantify methane point-source emissions across large geographic regions, and play an increasingly important role in industrial methane management and greenhouse gas inventory. We independently evaluate the performance of five major methane-sensing aircraft platforms: Carbon Mapper, GHGSat-AV, Insight M, MethaneAIR, and Scientific Aviation. Over a 6 week period, we released metered gas for over 700 single-blind measurements across all five platforms to evaluate their ability to detect and quantify emissions that range from 1 to over 1,500 kg(CH4)/h. Aircraft consistently quantified releases above 10 kg(CH4)/h, and GHGSat-AV and Insight M detected emissions below 5 kg(CH4)/h. Fully blinded quantification estimates for platforms using downward-facing imaging spectrometers have parity slopes ranging from 0.76 to 1.13, with R2 values of 0.61 to 0.93; the platform using continuous air sampling has a parity slope of 0.5 (R2 = 0.93). Results demonstrate that aircraft-based methane sensing has matured since previous studies and is ready for an increasingly important role in environmental policy and regulation.


Aircraft , Greenhouse Gases , Methane , Methane/analysis , Greenhouse Gases/analysis , Environmental Monitoring/methods , Climate Change , Air Pollutants/analysis
2.
Nature ; 627(8003): 328-334, 2024 Mar.
Article En | MEDLINE | ID: mdl-38480966

As airborne methane surveys of oil and gas systems continue to discover large emissions that are missing from official estimates1-4, the true scope of methane emissions from energy production has yet to be quantified. We integrate approximately one million aerial site measurements into regional emissions inventories for six regions in the USA, comprising 52% of onshore oil and 29% of gas production over 15 aerial campaigns. We construct complete emissions distributions for each, employing empirically grounded simulations to estimate small emissions. Total estimated emissions range from 0.75% (95% confidence interval (CI) 0.65%, 0.84%) of covered natural gas production in a high-productivity, gas-rich region to 9.63% (95% CI 9.04%, 10.39%) in a rapidly expanding, oil-focused region. The six-region weighted average is 2.95% (95% CI 2.79%, 3.14%), or roughly three times the national government inventory estimate5. Only 0.05-1.66% of well sites contribute the majority (50-79%) of well site emissions in 11 out of 15 surveys. Ancillary midstream facilities, including pipelines, contribute 18-57% of estimated regional emissions, similarly concentrated in a small number of point sources. Together, the emissions quantified here represent an annual loss of roughly US$1 billion in commercial gas value and a US$9.3 billion annual social cost6. Repeated, comprehensive, regional remote-sensing surveys offer a path to detect these low-frequency, high-consequence emissions for rapid mitigation, incorporation into official emissions inventories and a clear-eyed assessment of the most effective emission-finding technologies for a given region.

3.
Nat Commun ; 14(1): 7391, 2023 Nov 15.
Article En | MEDLINE | ID: mdl-37968304

Hydrogen (H2) as an energy carrier may play a role in various hard-to-abate subsectors, but to maximize emission reductions, supplied hydrogen must be reliable, low-emission, and low-cost. Here, we build a model that enables direct comparison of the cost of producing net-zero, hourly-reliable hydrogen from various pathways. To reach net-zero targets, we assume upstream and residual facility emissions are mitigated using negative emission technologies. For the United States (California, Texas, and New York), model results indicate next-decade hybrid electricity-based solutions are lower cost ($2.02-$2.88/kg) than fossil-based pathways with natural gas leakage greater than 4% ($2.73-$5.94/kg). These results also apply to regions outside of the U.S. with a similar climate and electric grid. However, when omitting the net-zero emission constraint and considering the U.S. regulatory environment, electricity-based production only achieves cost-competitiveness with fossil-based pathways if embodied emissions of electricity inputs are not counted under U.S. Tax Code Section 45V guidance.

4.
Proc Natl Acad Sci U S A ; 120(15): e2215275120, 2023 Apr 11.
Article En | MEDLINE | ID: mdl-37011214

The Gulf of Mexico is the largest offshore fossil fuel production basin in the United States. Decisions on expanding production in the region legally depend on assessments of the climate impact of new growth. Here, we collect airborne observations and combine them with previous surveys and inventories to estimate the climate impact of current field operations. We evaluate all major on-site greenhouse gas emissions, carbon dioxide (CO2) from combustion, and methane from losses and venting. Using these findings, we estimate the climate impact per unit of energy of produced oil and gas (the carbon intensity). We find high methane emissions (0.60 Tg/y [0.41 to 0.81, 95% confidence interval]) exceeding inventories. This elevates the average CI of the basin to 5.3 g CO2e/MJ [4.1 to 6.7] (100-y horizon) over twice the inventories. The CI across the Gulf varies, with deep water production exhibiting a low CI dominated by combustion emissions (1.1 g CO2e/MJ), while shallow federal and state waters exhibit an extraordinarily high CI (16 and 43 g CO2e/MJ) primarily driven by methane emissions from central hub facilities (intermediaries for gathering and processing). This shows that production in shallow waters, as currently operated, has outsized climate impact. To mitigate these climate impacts, methane emissions in shallow waters must be addressed through efficient flaring instead of venting and repair, refurbishment, or abandonment of poorly maintained infrastructure. We demonstrate an approach to evaluate the CI of fossil fuel production using observations, considering all direct production emissions while allocating to all fossil products.

5.
Sci Rep ; 13(1): 3836, 2023 Mar 07.
Article En | MEDLINE | ID: mdl-36882586

Satellites are increasingly seen as a tool for identifying large greenhouse gas point sources for mitigation, but independent verification of satellite performance is needed for acceptance and use by policy makers and stakeholders. We conduct to our knowledge the first single-blind controlled methane release testing of satellite-based methane emissions detection and quantification, with five independent teams analyzing data from one to five satellites each for this desert-based test. Teams correctly identified 71% of all emissions, ranging from 0.20 [0.19, 0.21] metric tons per hour (t/h) to 7.2 [6.8, 7.6] t/h. Three-quarters (75%) of quantified estimates fell within ± 50% of the metered value, comparable to airplane-based remote sensing technologies. The relatively wide-area Sentinel-2 and Landsat 8 satellites detected emissions as low as 1.4 [1.3, 1.5, 95% confidence interval] t/h, while GHGSat's targeted system quantified a 0.20 [0.19, 0.21] t/h emission to within 13%. While the fraction of global methane emissions detectable by satellite remains unknown, we estimate that satellite networks could see 19-89% of total oil and natural gas system emissions detected in a recent survey of a high-emitting region.

6.
ACS Omega ; 7(48): 43973-43980, 2022 Dec 06.
Article En | MEDLINE | ID: mdl-36506195

Natural gas distribution systems within municipalities supply a substantial fraction of energy consumed in the United States. As decarbonization of the natural gas system necessitates new modes of operation outside original design purposes, for example, increased hydrogen or biogas blending, it becomes increasingly important to understand in advance how existing infrastructure will respond to these changes. Such an analysis will require detailed information about the existing asset base, such as local soil composition, plastic type, and other characteristics that are not systematically tracked at present or have substantial missing data. Opportunistic sampling, for example, collecting measurements at assets that are already undergoing maintenance, has the potential to substantially reduce the cost of gathering such data but only if the results are representative of the full asset base. To assess prospects for such an approach, we employ a dataset including the entire service line and leak database from a large natural gas distribution utility (∼66,700 km of service pipelines and over 530,000 leaks over decades of observations). This dataset shows that service lines affected by excavation damage produce an approximately random sample of plastic and steel service lines, with similar distributions of component age, operating pressure, and pipeline diameter, as well as a relatively uniform spatial distribution. This means that opportunistic measurements at these locations will produce a first-order estimate of the relative prevalence of key characteristics across the utility's full asset base of service lines. We employ this approach to estimate the plastic type, which is unknown for roughly 80% of plastic service lines in the database. We also find that while 32% of leaks across all components occur in threaded steel junctions, excavation damage accounts for 75% of hazardous grade 1 leaks in plastic service lines and corrosion accounts for 47% in steel service lines. Insights from this sampling approach can thus help natural gas utilities collect the data they need to ensure a safe and reliable transition to a lower-emission system.

7.
Nat Commun ; 13(1): 7853, 2022 12 21.
Article En | MEDLINE | ID: mdl-36543764

A pressing challenge facing the aviation industry is to aggressively reduce greenhouse gas emissions in the face of increasing demand for aviation fuels. Climate goals such as carbon-neutral growth from 2020 onwards require continuous improvements in technology, operations, infrastructure, and most importantly, reductions in aviation fuel life cycle emissions. The Carbon Offsetting Scheme for International Aviation of the International Civil Aviation Organization provides a global market-based measure to group all possible emissions reduction measures into a joint program. Using a bottom-up, engineering-based modeling approach, this study provides the first estimates of life cycle greenhouse gas emissions from petroleum jet fuel on regional and global scales. Here we show that not all petroleum jet fuels are the same as the country-level life cycle emissions of petroleum jet fuels range from 81.1 to 94.8 gCO2e MJ-1, with a global volume-weighted average of 88.7 gCO2e MJ-1. These findings provide a high-resolution baseline against which sustainable aviation fuel and other emissions reduction opportunities can be prioritized to achieve greater emissions reductions faster.


Aviation , Greenhouse Gases , Petroleum , Greenhouse Effect , Carbon/analysis
8.
Environ Sci Technol Lett ; 9(11): 969-974, 2022 Nov 08.
Article En | MEDLINE | ID: mdl-36398313

The rapid reduction of methane emissions, especially from oil and gas (O&G) operations, is a critical part of slowing global warming. However, few studies have attempted to specifically characterize emissions from natural gas gathering pipelines, which tend to be more difficult to monitor on the ground than other forms of O&G infrastructure. In this study, we use methane emission measurements collected from four recent aerial campaigns in the Permian Basin, the most prolific O&G basin in the United States, to estimate a methane emission factor for gathering lines. From each campaign, we calculate an emission factor between 2.7 (+1.9/-1.8, 95% confidence interval) and 10.0 (+6.4/-6.2) Mg of CH4 year-1 km-1, 14-52 times higher than the U.S. Environmental Protection Agency's national estimate for gathering lines and 4-13 times higher than the highest estimate derived from a published ground-based survey of gathering lines. Using Monte Carlo techniques, we demonstrate that aerial data collection allows for a greater sample size than ground-based data collection and therefore more comprehensive identification of emission sources that comprise the heavy tail of methane emissions distributions. Our results suggest that pipeline emissions are underestimated in current inventories and highlight the importance of a large sample size when calculating basinwide pipeline emission factors.

9.
Science ; 377(6614): 1566-1571, 2022 09 30.
Article En | MEDLINE | ID: mdl-36173866

Flaring is widely used by the fossil fuel industry to dispose of natural gas. Industry and governments generally assume that flares remain lit and destroy methane, the predominant component of natural gas, with 98% efficiency. Neither assumption, however, is based on real-world observations. We calculate flare efficiency using airborne sampling across three basins responsible for >80% of US flaring and combine these observations with unlit flare prevalence surveys. We find that both unlit flares and inefficient combustion contribute comparably to ineffective methane destruction, with flares effectively destroying only 91.1% (90.2, 91.8; 95% confidence interval) of methane. This represents a fivefold increase in methane emissions above present assumptions and constitutes 4 to 10% of total US oil and gas methane emissions, highlighting a previously underappreciated methane source and mitigation opportunity.

10.
Environ Sci Technol ; 56(7): 4317-4323, 2022 04 05.
Article En | MEDLINE | ID: mdl-35317555

Limiting emissions of climate-warming methane from oil and gas (O&G) is a major opportunity for short-term climate benefits. We deploy a basin-wide airborne survey of O&G extraction and transportation activities in the New Mexico Permian Basin, spanning 35 923 km2, 26 292 active wells, and over 15 000 km of natural gas pipelines using an independently validated hyperspectral methane point source detection and quantification system. The airborne survey repeatedly visited over 90% of the active wells in the survey region throughout October 2018 to January 2020, totaling approximately 98 000 well site visits. We estimate total O&G methane emissions in this area at 194 (+72/-68, 95% CI) metric tonnes per hour (t/h), or 9.4% (+3.5%/-3.3%) of gross gas production. 50% of observed emissions come from large emission sources with persistence-averaged emission rates over 308 kg/h. The fact that a large sample size is required to characterize the heavy tail of the distribution emphasizes the importance of capturing low-probability, high-consequence events through basin-wide surveys when estimating regional O&G methane emissions.


Air Pollutants , Methane , Air Pollutants/analysis , Methane/analysis , Natural Gas/analysis , New Mexico , Water Wells
11.
Nature ; 599(7883): 80-84, 2021 11.
Article En | MEDLINE | ID: mdl-34732864

Expanded use of novel oil extraction technologies has increased the variability of petroleum resources and diversified the carbon footprint of the global oil supply1. Past life-cycle assessment (LCA) studies overlooked upstream emission heterogeneity by assuming that a decline in oil demand will displace average crude oil2. We explore the life-cycle greenhouse gas emissions impacts of marginal crude sources, identifying the upstream carbon intensity (CI) of the producers most sensitive to an oil demand decline (for example, due to a shift to alternative vehicles). We link econometric models of production profitability of 1,933 oilfields (~90% of the 2015 world supply) with their production CI. Then, we examine their response to a decline in demand under three oil market structures. According to our estimates, small demand shocks have different upstream CI implications than large shocks. Irrespective of the market structure, small shocks (-2.5% demand) displace mostly heavy crudes with ~25-54% higher CI than that of the global average. However, this imbalance diminishes as the shocks become bigger and if producers with market power coordinate their response to a demand decline. The carbon emissions benefits of reduction in oil demand are systematically dependent on the magnitude of demand drop and the global oil market structure.

12.
Nat Commun ; 12(1): 4715, 2021 08 05.
Article En | MEDLINE | ID: mdl-34354066

Methane (CH4) emissions from oil and natural gas (O&NG) systems are an important contributor to greenhouse gas emissions. In the United States, recent synthesis studies of field measurements of CH4 emissions at different spatial scales are ~1.5-2× greater compared to official greenhouse gas inventory (GHGI) estimates, with the production-segment as the dominant contributor to this divergence. Based on an updated synthesis of measurements from component-level field studies, we develop a new inventory-based model for CH4 emissions, for the production-segment only, that agrees within error with recent syntheses of site-level field studies and allows for isolation of equipment-level contributions. We find that unintentional emissions from liquid storage tanks and other equipment leaks are the largest contributors to divergence with the GHGI. If our proposed method were adopted in the United States and other jurisdictions, inventory estimates could better guide CH4 mitigation policy priorities.

14.
Environ Sci Technol ; 52(15): 8947-8953, 2018 08 07.
Article En | MEDLINE | ID: mdl-29989804

We performed an infrared optical gas imaging (OGI) survey by helicopter of hydrocarbon emissions in the Bakken formation of North Dakota. One year after an earlier survey of 682 well pads in September of 2014, the same helicopter crew resurveyed 353 well pads in 2015 to examine the persistence of emissions. Twenty-one newly producing well pads were added in the same sampling blocks. An instrumented aircraft was also used to quantify emissions from 33 plumes identified by aerial OGI. Well pads emitting methane and ethane in 2014 were far more likely to be emitting in 2015 than would be expected by chance; Monte Carlo simulations suggest >5σ deviation ( p < 0.0001) from random assignment of detectable emissions between survey years. Scaled up using basin-wide leakage estimates, the emissions quantified by aircraft are sufficient to explain previously observed basin-wide emissions of methane and ethane.


Air Pollutants , Methane , Ethane , Natural Gas , North Dakota
15.
Science ; 361(6398): 186-188, 2018 07 13.
Article En | MEDLINE | ID: mdl-29930092

Methane emissions from the U.S. oil and natural gas supply chain were estimated by using ground-based, facility-scale measurements and validated with aircraft observations in areas accounting for ~30% of U.S. gas production. When scaled up nationally, our facility-based estimate of 2015 supply chain emissions is 13 ± 2 teragrams per year, equivalent to 2.3% of gross U.S. gas production. This value is ~60% higher than the U.S. Environmental Protection Agency inventory estimate, likely because existing inventory methods miss emissions released during abnormal operating conditions. Methane emissions of this magnitude, per unit of natural gas consumed, produce radiative forcing over a 20-year time horizon comparable to the CO2 from natural gas combustion. Substantial emission reductions are feasible through rapid detection of the root causes of high emissions and deployment of less failure-prone systems.

16.
Environ Sci Technol ; 52(4): 2368-2374, 2018 02 20.
Article En | MEDLINE | ID: mdl-29351718

Methane, a key component of natural gas, is a potent greenhouse gas. A key feature of recent methane mitigation policies is the use of periodic leak detection surveys, typically done with optical gas imaging (OGI) technologies. The most common OGI technology is an infrared camera. In this work, we experimentally develop detection probability curves for OGI-based methane leak detection under different environmental and imaging conditions. Controlled single blind leak detection tests show that the median detection limit (50% detection likelihood) for FLIR-camera based OGI technology is about 20 g CH4/h at an imaging distance of 6 m, an order of magnitude higher than previously reported estimates of 1.4 g CH4/h. Furthermore, we show that median and 90% detection likelihood limit follows a power-law relationship with imaging distance. Finally, we demonstrate that real-world marginal effectiveness of methane mitigation through periodic surveys approaches zero as leak detection sensitivity improves. For example, a median detection limit of 100 g CH4/h is sufficient to detect the maximum amount of leakage that is possible through periodic surveys. Policy makers should take note of these limits while designing equivalence metrics for next-generation leak detection technologies that can trade sensitivity for cost without affecting mitigation priorities.


Greenhouse Gases , Methane , Environmental Monitoring , Natural Gas , Single-Blind Method
17.
Proc Natl Acad Sci U S A ; 114(26): 6722-6727, 2017 06 27.
Article En | MEDLINE | ID: mdl-28630353

A number of analyses, meta-analyses, and assessments, including those performed by the Intergovernmental Panel on Climate Change, the National Oceanic and Atmospheric Administration, the National Renewable Energy Laboratory, and the International Energy Agency, have concluded that deployment of a diverse portfolio of clean energy technologies makes a transition to a low-carbon-emission energy system both more feasible and less costly than other pathways. In contrast, Jacobson et al. [Jacobson MZ, Delucchi MA, Cameron MA, Frew BA (2015) Proc Natl Acad Sci USA 112(49):15060-15065] argue that it is feasible to provide "low-cost solutions to the grid reliability problem with 100% penetration of WWS [wind, water and solar power] across all energy sectors in the continental United States between 2050 and 2055", with only electricity and hydrogen as energy carriers. In this paper, we evaluate that study and find significant shortcomings in the analysis. In particular, we point out that this work used invalid modeling tools, contained modeling errors, and made implausible and inadequately supported assumptions. Policy makers should treat with caution any visions of a rapid, reliable, and low-cost transition to entire energy systems that relies almost exclusively on wind, solar, and hydroelectric power.

18.
PLoS One ; 12(2): e0171083, 2017.
Article En | MEDLINE | ID: mdl-28178318

This paper estimates changes in the energy return on investment (EROI) for five large petroleum fields over time using the Oil Production Greenhouse Gas Emissions Estimator (OPGEE). The modeled fields include Cantarell (Mexico), Forties (U.K.), Midway-Sunset (U.S.), Prudhoe Bay (U.S.), and Wilmington (U.S.). Data on field properties and production/processing parameters were obtained from a combination of government and technical literature sources. Key areas of uncertainty include details of the oil and gas surface processing schemes. We aim to explore how long-term trends in depletion at major petroleum fields change the effective energetic productivity of petroleum extraction. Four EROI ratios are estimated for each field as follows: The net energy ratio (NER) and external energy ratio (EER) are calculated, each using two measures of energy outputs, (1) oil-only and (2) all energy outputs. In all cases, engineering estimates of inputs are used rather than expenditure-based estimates (including off-site indirect energy use and embodied energy). All fields display significant declines in NER over the modeling period driven by a combination of (1) reduced petroleum production and (2) increased energy expenditures on recovery methods such as the injection of water, steam, or gas. The fields studied had NER reductions ranging from 46% to 88% over the modeling periods (accounting for all energy outputs). The reasons for declines in EROI differ by field. Midway-Sunset experienced a 5-fold increase in steam injected per barrel of oil produced. In contrast, Prudhoe Bay has experienced nearly a 30-fold increase in amount of gas processed and reinjected per unit of oil produced. In contrast, EER estimates are subject to greater variability and uncertainty due to the relatively small magnitude of external energy investments in most cases.


Engineering , Investments , Models, Theoretical , Oil and Gas Fields , Petroleum , Algorithms
19.
Environ Sci Technol ; 51(1): 718-724, 2017 01 03.
Article En | MEDLINE | ID: mdl-27936621

Concerns over mitigating methane leakage from the natural gas system have become ever more prominent in recent years. Recently, the U.S. Environmental Protection Agency proposed regulations requiring use of optical gas imaging (OGI) technologies to identify and repair leaks. In this work, we develop an open-source predictive model to accurately simulate the most common OGI technology, passive infrared (IR) imaging. The model accurately reproduces IR images of controlled methane release field experiments as well as reported minimum detection limits. We show that imaging distance is the most important parameter affecting IR detection effectiveness. In a simulated well-site, over 80% of emissions can be detected from an imaging distance of 10 m. Also, the presence of "superemitters" greatly enhance the effectiveness of IR leak detection. The minimum detectable limits of this technology can be used to selectively target "superemitters", thereby providing a method for approximate leak-rate quantification. In addition, model results show that imaging backdrop controls IR imaging effectiveness: land-based detection against sky or low-emissivity backgrounds have higher detection efficiency compared to aerial measurements. Finally, we show that minimum IR detection thresholds can be significantly lower for gas compositions that include a significant fraction nonmethane hydrocarbons.


Environmental Monitoring , Methane , Models, Theoretical , Natural Gas , United States , United States Environmental Protection Agency
20.
Environ Sci Technol ; 50(22): 12512-12520, 2016 11 15.
Article En | MEDLINE | ID: mdl-27740745

Future energy systems may rely on natural gas as a low-cost fuel to support variable renewable power. However, leaking natural gas causes climate damage because methane (CH4) has a high global warming potential. In this study, we use extreme-value theory to explore the distribution of natural gas leak sizes. By analyzing ∼15 000 measurements from 18 prior studies, we show that all available natural gas leakage data sets are statistically heavy-tailed, and that gas leaks are more extremely distributed than other natural and social phenomena. A unifying result is that the largest 5% of leaks typically contribute over 50% of the total leakage volume. While prior studies used log-normal model distributions, we show that log-normal functions poorly represent tail behavior. Our results suggest that published uncertainty ranges of CH4 emissions are too narrow, and that larger sample sizes are required in future studies to achieve targeted confidence intervals. Additionally, we find that cross-study aggregation of data sets to increase sample size is not recommended due to apparent deviation between sampled populations. Understanding the nature of leak distributions can improve emission estimates, better illustrate their uncertainty, allow prioritization of source categories, and improve sampling design. Also, these data can be used for more effective design of leak detection technologies.


Methane , Natural Gas , Models, Theoretical
...