Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 12: 1386816, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784769

RESUMEN

Introduction: Bone tumors, characterized by diverse locations and shapes, often necessitate surgical excision followed by custom implant placement to facilitate targeted bone reconstruction. Leveraging additive manufacturing, patient-specific implants can be precisely tailored with complex geometries and desired stiffness, enhancing their suitability for bone ingrowth. Methods: In this work, a finite element model is employed to assess patient-specific lattice implants in femur bones. Our model is validated using experimental data obtained from an animal study (n = 9). Results: The results demonstrate the accuracy of the proposed finite element model in predicting the implant mechanical behavior. The model was used to investigate the influence of reducing the elastic modulus of a solid Ti6Al4V implant by tenfold, revealing that such a reduction had no significant impact on bone behavior under maximum compression and torsion loading. This finding suggests a potential avenue for reducing the endoprosthesis modulus without compromising bone integrity. Discussion: Our research suggests that employing fully lattice implants not only facilitates bone ingrowth but also has the potential to reduce overall implant stiffness. This reduction is crucial in preventing significant bone remodeling associated with stress shielding, a challenge often associated with the high stiffness of fully solid implants. The study highlights the mechanical benefits of utilizing lattice structures in implant design for enhanced patient outcomes.

2.
Adv Mater ; 36(34): e2308715, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38160263

RESUMEN

Additively manufactured metamaterials are architectured cellular materials that can be engineered through structural innovations to achieve unusual mechanical and multifunctional properties. Among these, hollow-strut lattice (HSL) metamaterials have proven to allow outstanding structural efficiency, with a multifunctional architecture ideal for lightweight, biomedical, microfluidic, and thermal engineering. To capitalize on their structural efficiency and significantly extend their mechanical envelope, a thin-plate lattice topology is seamlessly integrated into the inner hollow space of an HSL topology. This integration serves a dual purpose: to radically enhance the resistance of the irregular HSL nodes to deformation and to uniformly distribute the applied stresses in the new topology for unparalleled strength. Fabricated in titanium alloy Ti-6Al-4V with densities of 1.0-1.8 g cm-3 , this thin-plate integrated hollow-strut lattice (TP-HSL) metamaterials achieve relative yield strength that well surpasses the empirical upper limit of all cellular metals, including HSL and solid-strut lattice (SSL) metamaterials made from various metallic alloys. Furthermore, their absolute yield strength drastically exceeds that of magnesium alloys with comparable densities while inheriting the high corrosion resistance, biocompatibility, heat resistance, and other unique attributes of Ti-6Al-4V. Titanium multi-topology metamaterials expand the boundaries of lightweight multifunctional metallic materials.

3.
Front Bioeng Biotechnol ; 11: 1301454, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38130824

RESUMEN

Introduction: Stress shielding is a common complication following endoprosthetic reconstruction surgery. The resulting periprosthetic osteopenia often manifests as catastrophic fractures and can significantly limit future treatment options. It has been long known that bone plates with lower elastic moduli are key to reducing the risk of stress shielding in orthopedics. Inclusion of open space lattices in metal endoprostheses is believed to reduce the prosthesis modulus potentially improving stress shielding. However, no in vivo data is currently available to support this assumption in long bone reconstruction. This manuscript aims to address this hypothesis using a sheep model of extraarticular bone defect. Methods: Initially, CT was used to create a virtual resection plan of the distal femoral metaphyses and to custom design endoprostheses specific to each femur. The endoprostheses comprised additively manufactured Ti6Al4V-ELI modules that either had a solid core with a modulus of ∼120 GPa (solid implant group) or an open space lattice core with unit cells that had a modulus of 3-6 GPa (lattice implant group). Osteotomies were performed using computer-assisted navigation followed by implantations. The periprosthetic, interfacial and interstitial regions of interest were evaluated by a combination of micro-CT, back-scattered scanning electron microscopy (BSEM), as well as epifluorescence and brightfield microscopy. Results: In the periprosthetic region, mean pixel intensity (a proxy for tissue mineral density in BSEM) in the caudal cortex was found to be higher in the lattice implant group. This was complemented by BSEM derived porosity being lower in the lattice implant group in both caudal and cranial cortices. In the interfacial and interstitial regions, most pronounced differences were observed in the axial interfacial perimeter where the solid implant group had greater bone coverage. In contrast, the lattice group had a greater coverage in the cranial interfacial region. Conclusion: Our findings suggest that reducing the prosthesis modulus by inclusion of an open-space lattice in its design has a positive effect on bone material and morphological parameters particularly within the periprosthetic regions. Improved mechanics appears to also have a measurable effect on the interfacial osteogenic response and osteointegration.

4.
Chem Commun (Camb) ; 59(90): 13406-13420, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37850470

RESUMEN

Combining the design flexibility and rapid prototyping capabilities of additive manufacturing with photocatalytic and plasmonic functionalities is promising for the development of next-generation SERS applications such as point of care diagnostics and in situ monitoring of chemical reactions in fuels and chemical processing. Laser powder bed fusion (LPBF) is a well-matured additive manufacturing technique which generates metallic structures through localised melting and joining of metal powders using a laser. LPBF reduces material wastage during manufacturing, is applicable to a wide range of metals and alloys, and allows printing of complex internal structures. This feature article elaborates the use of soot templating, chemical vapour deposition and electroless plating techniques for grafting plasmonic and semiconductor nanoparticles on the surface of LPBF manufactured metallic substrates. The capability to fabricate different types of intricate metallic lattices using additive manufacturing is demonstrated and technical challenges in their adequate functionalization are elaborated. The developed methodology allows tailoring of the substrate structure, composition, morphology, plasmonic and photocatalytic activities and thus unveils a new class of recyclable SERS substrates.

5.
Polymers (Basel) ; 15(10)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37242970

RESUMEN

The transition of additive manufacturing (AM) from a technique for rapid prototyping to one for manufacturing of near net or net components has been led by the development of methods that can repeatedly fabricate quality parts. High-speed laser sintering and the recently developed multi-jet fusion (MJF) processes have seen quick adoption from industry due to their ability to produce high-quality components relatively quickly. However, the recommended refresh ratios of new powder led to notable amounts of used powder being discarded. In this research, polyamide-11 powder, typically used in AM, was thermally aged to investigate its properties at extreme levels of reuse. The powder was exposed to 180 °C in air for up to 168 h and its chemical, morphological, thermal, rheological, and mechanical properties were examined. To decouple the thermo-oxidative aging phenomena from AM process related effects, such as porosity, rheological and mechanical properties characterisation was performed on compression-moulded specimens. It was found that exposure notably affected the properties of both the powder and the derived compression-moulded specimens within the first 24 h of exposure; however, consecutive exposure did not have a significant effect.

6.
Nature ; 618(7963): 63-68, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37259002

RESUMEN

Titanium alloys are advanced lightweight materials, indispensable for many critical applications1,2. The mainstay of the titanium industry is the α-ß titanium alloys, which are formulated through alloying additions that stabilize the α and ß phases3-5. Our work focuses on harnessing two of the most powerful stabilizing elements and strengtheners for α-ß titanium alloys, oxygen and iron1-5, which are readily abundant. However, the embrittling effect of oxygen6,7, described colloquially as 'the kryptonite to titanium'8, and the microsegregation of iron9 have hindered their combination for the development of strong and ductile α-ß titanium-oxygen-iron alloys. Here we integrate alloy design with additive manufacturing (AM) process design to demonstrate a series of titanium-oxygen-iron compositions that exhibit outstanding tensile properties. We explain the atomic-scale origins of these properties using various characterization techniques. The abundance of oxygen and iron and the process simplicity for net-shape or near-net-shape manufacturing by AM make these α-ß titanium-oxygen-iron alloys attractive for a diverse range of applications. Furthermore, they offer promise for industrial-scale use of off-grade sponge titanium or sponge titanium-oxygen-iron10,11, an industrial waste product at present. The economic and environmental potential to reduce the carbon footprint of the energy-intensive sponge titanium production12 is substantial.

7.
Int J Comput Assist Radiol Surg ; 18(10): 1783-1793, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36859520

RESUMEN

PURPOSE: Bone tumours must be surgically excised in one piece with a margin of healthy tissue. The unique nature of each bone tumour case is well suited to the use of patient-specific implants, with additive manufacturing allowing production of highly complex geometries. This work represents the first assessment of the combination of surgical robotics and patient-specific additively manufactured implants. METHODS: The development and evaluation of a robotic system for bone tumour excision, capable of milling complex osteotomy paths, is described. The developed system was evaluated as part of an animal trial on 24 adult male sheep, in which robotic bone excision of the distal femur was followed by placement of patient-specific implants with operative time evaluated. Assessment of implant placement accuracy was completed based on post-operative CT scans. RESULTS: A mean overall implant position error of 1.05 ± 0.53 mm was achieved, in combination with a mean orientation error of 2.38 ± 0.98°. A mean procedure time (from access to implantation, excluding opening and closing) of 89.3 ± 25.25 min was observed, with recorded surgical time between 58 and 133 min, with this approximately evenly divided between robotic (43.9 ± 15.32) and implant-based (45.4 ± 18.97) tasks. CONCLUSIONS: This work demonstrates the ability for robotics to achieve repeatable and precise removal of complex bone volumes of the type that would allow en bloc removal of a bone tumour. These robotically created volumes can be precisely filled with additively manufactured patient-specific implants, with minimal gap between cut surface and implant interface.


Asunto(s)
Implantes Dentales , Ortopedia , Robótica , Cirugía Asistida por Computador , Masculino , Animales , Ovinos , Cirugía Asistida por Computador/métodos , Tomografía Computarizada por Rayos X , Fémur/diagnóstico por imagen , Fémur/cirugía
8.
Int J Comput Assist Radiol Surg ; 18(3): 553-564, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36319922

RESUMEN

PURPOSE: Planning for bone tumor resection surgery is a technically demanding and time-consuming task, reliant on manual positioning of planar cuts in a virtual space. More elaborate cutting approaches may be possible through the use of surgical robots or patient-specific instruments; however, methods for preparing such a resection plan must be developed. METHODS: This work describes an automated approach for generating conformal bone tumor resection plans, where the resection geometry is defined by the convex hull of the tumor, and a focal point. The resection geometry is optimized using particle swarm, where the volume of healthy bone collaterally resected with the tumor is minimized. The approach was compared to manually prepared planar resection plans from an experienced surgeon for 20 tumor cases. RESULTS: It was found that algorithm-generated hull-type resections greatly reduced the volume of collaterally resected healthy bone. The hull-type resections resulted in statistically significant improvements compared to the manual approach (paired t test, p < 0.001). CONCLUSIONS: The described approach has potential to improve patient outcomes by reducing the volume of healthy bone collaterally resected with the tumor and preserving nearby critical anatomy.


Asunto(s)
Neoplasias Óseas , Cirugía Asistida por Computador , Humanos , Neoplasias Óseas/cirugía , Cirugía Asistida por Computador/métodos , Algoritmos
9.
Med Phys ; 49(1): 52-69, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34796527

RESUMEN

PURPOSE: To design and manufacture a customized thoracic phantom slab utilizing the 3D printing process, also known as additive manufacturing, consisting of different tissue density materials. Here, we demonstrate the 3D-printed phantom's clinical feasibility for imaging and dosimetric verification of volumetric modulated arc radiotherapy (VMAT) plans for lung and spine stereotactic ablative body radiotherapy (SABR) through end-to-end dosimetric verification. METHODS: A customizable anthropomorphic phantom slab was designed using the CT dataset of a commercial phantom (adult female ATOM dosimetry phantom, CIRS Inc.). Material extrusion 3D printing was utilized to manufacture the phantom slab consisting of acrylonitrile butadiene styrene material for the lung and the associated lesion, polylactic acid (PLA) material for soft tissue and spinal cord, and both PLA and iron-reinforced PLA materials for bone. CT images were acquired for both the commercial phantom and 3D-printed phantom for HU comparison. VMAT plans were generated for spine and lung SABR scenarios and were delivered as per departmental SABR protocols using a Varian TrueBeam STx linear accelerator. End-to-end dosimetry was implemented with radiochromic films, analyzed with gamma criteria of 5% dose difference, and a distance-to-agreement of 1 mm, at a 10% low-dose threshold by comparing with calculated dose using the Acuros algorithm of the Eclipse treatment planning system (v15.6). RESULTS: 3D-printed phantom inserts were observed to produce HU ranging from -750 to 2100. The 3D-printed phantom slab was observed to achieve a similar range of HU from the commercial phantom including a mean HU of -760 for lung tissue, a mean HU of 50 for soft tissue, and a mean HU of 220 and 630 for low- and high-density bone, respectively. Film dosimetry results show 2D-gamma passing rates for lung SABR (internal and superior) and spine SABR (inferior and superior) over 98% and 90%, respectively. CONCLUSIONS: The end-to-end testing of VMAT plans for spine and lung SABR suggests the clinical feasibility of the 3D-printed phantom, consisting of different tissue density materials that emulate lung, soft tissue, and bone in kV imaging and megavoltage photon dosimetry. Further investigation of the proposed 3D printing techniques for manufacturability and reproducibility will enable the development of clinical 3D-printed phantoms in radiotherapy.


Asunto(s)
Densidad Ósea , Radioterapia de Intensidad Modulada , Femenino , Humanos , Pulmón/diagnóstico por imagen , Fantasmas de Imagen , Impresión Tridimensional , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Reproducibilidad de los Resultados
10.
Comput Biol Med ; 137: 104777, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34492517

RESUMEN

Planning for bone tumor resection surgery is a technically demanding and time-consuming task, reliant on manual positioning of cutting planes (CPs). This work describes an automated approach for generating bone tumor resection plans, where the volume of healthy bone collaterally resected with the tumor is minimized through optimized placement of CPs. Particle swarm optimization calculates the optimal position and orientation of the CPs by introducing a single new CP to an existing resection, then optimizing all CPs to find the global minima. The bone bounded by all CPs is collaterally resected with the tumor. The approach was compared to manual resection plans from an experienced surgeon for 20 tumor cases. It was found that a greater number of CPs reduce the collaterally resected healthy bone, with diminishing returns on this improvement after five CPs. The algorithm-generated resection plan with equivalent number of CPs resulted in a statistically significant improvement over manual plans (paired t-test, p < 0.001). The described approach has potential to improve patient outcomes by reducing loss of healthy bone in tumor surgery while offering a surgeon multiple resection plan options.


Asunto(s)
Neoplasias Óseas , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/cirugía , Humanos , Planificación de la Radioterapia Asistida por Computador
11.
3D Print Addit Manuf ; 8(1): 51-68, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36655177

RESUMEN

Additive manufacturing (AM) enables the fabrication of lattice structures with optimal mechanical, fluid, and thermal properties. However, during the AM fabrication process, defects are produced in the strut and node elements, which comprise the lattice structure. This leads to discrepancies between the AM fabricated lattice and its idealized computer-aided design (CAD) model, negatively affecting the ability to predict the mechanical behavior of the fabricated lattice via numerical models. Current research is focused on quantification of geometric uncertainties in the strut elements of the lattice; as-manufactured node geometries remain relatively unexplored on an individual scale, despite their criticality to the mechanical response of the structure. Understanding the geometrical properties of as-manufactured nodes relative to CAD idealizations can be used to improve lattice designs and numerical models. In this research, X-ray microcomputed tomography (µCT) is used to analyze and quantify the as-manufactured nodal geometry, found in face-centered cubic and face-centered cubic with axial struts lattices fabricated via selective laser melting. A custom tool is developed that enables auto-isolation and classification of nodal joints from µCT-derived cross-sectional slices. Geometrical properties are extracted from the isolated nodal cross sections and compared with their idealized CAD model counterpart. Quantification of geometrical defects provides insight into how nodes within an AM lattice structure differ from each other and their idealized design. Overall, this research is an initial step toward developing accurate and efficient numerical models, as well as better node design for AM.

12.
Polymers (Basel) ; 12(9)2020 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-32899316

RESUMEN

Graphene-polyamide-6 (PA6) composites with up to 17.0%·w/w graphene content were prepared via melt mixing. Oscillatory rheometry revealed that the dynamic viscoelastic properties of PA6 decreased with the addition of 0.1%·w/w graphene but increased when the graphene content was increased to 6.0%·w/w and higher. Further analysis indicated that the rheological percolation threshold was between 6.0 and 10.0%·w/w graphene. The Carreau-Yasuda model was used to describe the complex viscosity of the materials. Capillary rheometry was applied to assess the steady shear rheology of neat PA6 and the 17.0%·w/w graphene-PA6 composite. High material viscosity at low shear rates coupled with intense shear-thinning in the composite highlighted the importance of selecting the appropriate rheological characterisation methods, shear rates and rheological models when assessing the 3D printability of percolated graphene-polymer composites for material extrusion (ME). A method to predict the printability of an ME filament feedstock, based on fundamental equations describing material flow through the printer nozzle, in the form of a printing envelope, was developed and verified experimentally. It was found that designing filaments with steady shear viscosities of approximately 15% of the maximum printable viscosity for the desired printing conditions will be advantageous for easy ME processing.

13.
ACS Appl Bio Mater ; 3(1): 29-36, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35019423

RESUMEN

Diamond-based implant materials make up an emerging research area where the materials could be prepared to promote cellular functions, decrease bacteria attachment, and be suitable for potential in situ imaging. Up until now, diamond implants have been fabricated using coating technologies or embedding diamond nanoparticles in polymer matrices. Here we demonstrated a method of manufacturing diamond implants using laser cladding technology to 3D print a composite of diamond and fused titanium material. Using this method, we could prepare composite scaffolds of up to 50% diamond, which has never been achieved before. We next investigated the interfacial properties of these scaffolds for potential applications in implants. The addition of diamond to the biomaterial results in a 30% decrease in the water contact angle, making the scaffolds more hydrophilic and improving cellular adhesion and proliferation.

14.
IEEE Rev Biomed Eng ; 13: 184-198, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31714234

RESUMEN

The field of robotic surgery has progressed from small teams of researchers repurposing industrial robots, to a competitive and highly innovative subsection of the medical device industry. Surgical robots allow surgeons to perform tasks with greater ease, accuracy, or safety, and fall under one of four levels of autonomy; active, semi-active, passive, and remote manipulator. The increased accuracy afforded by surgical robots has allowed for cementless hip arthroplasty, improved postoperative alignment following knee arthroplasty, and reduced duration of intraoperative fluoroscopy among other benefits. Cutting of bone has historically used tools such as hand saws and drills, with other elaborate cutting tools now used routinely to remodel bone. Improvements in cutting accuracy and additional options for safety and monitoring during surgery give robotic surgeries some advantages over conventional techniques. This article aims to provide an overview of current robots and tools with a common target tissue of bone, proposes a new process for defining the level of autonomy for a surgical robot, and examines future directions in robotic surgery.


Asunto(s)
Huesos/cirugía , Procedimientos Ortopédicos , Procedimientos Quirúrgicos Robotizados , Automatización , Humanos , Procedimientos Neuroquirúrgicos , Seguridad del Paciente , Columna Vertebral/cirugía
15.
Technol Cancer Res Treat ; 18: 1533033819870208, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31514632

RESUMEN

INTRODUCTION: Additive manufacturing or 3-dimensional printing has become a widespread technology with many applications in medicine. We have conducted a systematic review of its application in radiation oncology with a particular emphasis on the creation of phantoms for image quality assessment and radiation dosimetry. Traditionally used phantoms for quality assurance in radiotherapy are often constraint by simplified geometry and homogenous nature to perform imaging analysis or pretreatment dosimetric verification. Such phantoms are limited due to their ability in only representing the average human body, not only in proportion and radiation properties but also do not accommodate pathological features. These limiting factors restrict the patient-specific quality assurance process to verify image-guided positioning accuracy and/or dose accuracy in "water-like" condition. METHODS AND RESULTS: English speaking manuscripts published since 2008 were searched in 5 databases (Google Scholar, Scopus, PubMed, IEEE Xplore, and Web of Science). A significant increase in publications over the 10 years was observed with imaging and dosimetry phantoms about the same total number (52 vs 50). Key features of additive manufacturing are the customization with creation of realistic pathology as well as the ability to vary density and as such contrast. Commonly used printing materials, such as polylactic acid, acrylonitrile butadiene styrene, high-impact polystyrene and many more, are utilized to achieve a wide range of achievable X-ray attenuation values from -1000 HU to 500 HU and higher. Not surprisingly, multimaterial printing using the polymer jetting technology is emerging as an important printing process with its ability to create heterogeneous phantoms for dosimetry in radiotherapy. CONCLUSION: Given the flexibility and increasing availability and low cost of additive manufacturing, it can be expected that its applications for radiation medicine will continue to increase.


Asunto(s)
Imagenología Tridimensional/métodos , Neoplasias/radioterapia , Impresión Tridimensional , Oncología por Radiación/tendencias , Humanos , Fantasmas de Imagen , Radiometría
16.
Materials (Basel) ; 12(15)2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-31382506

RESUMEN

Additive manufacturing (AM) is a rapidly growing field of technology. In order to increase the variety of metal alloys applicable for AM, selective laser melting (SLM) of duplex stainless steel 2205 powder and the resulting microstructure, density, mechanical properties, and corrosion resistance were investigated. An optimal set of processing parameters for producing high density (>99.9%) material was established. Various post-processing heat treatments were applied on the as-built predominantly ferritic material to achieve the desired dual-phase microstructure. Effects of annealing at temperatures of 950 °C, 1000 °C, 1050 °C, and 1100 °C on microstructure, crystallographic texture, and phase balance were examined. As a result of annealing, 40-46 vol.% of austenite phase was formed. Annealing decreased the high yield and tensile strength values of the as-built material, but significantly increased the ductility. Annealing also decreased the residual stresses in the material. Mechanical properties of the SLM-processed and heat-treated materials outperformed those of conventionally produced alloy counterparts. Using a scanning strategy with 66° rotation between layers decreased the strength of the crystallographic texture. Electrochemical cyclic potentiodynamic polarization testing in 0.6 M NaCl solution at room temperature showed that the heat treatment improved the pitting corrosion resistance of the as-built SLM-processed material.

17.
Acta Biomater ; 87: 273-284, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30690210

RESUMEN

Titanium (Ti) based tissue engineering scaffolds can be used to repair damaged bone. However, successful orthopedic applications of these scaffolds rely on their ability to mimic the mechanical properties of trabecular bone. Selective laser melting (SLM) was used to manufacture scaffolds of a new ß-Ti35Zr28Nb alloy for biomedical applications. Porosity values of the scaffolds were 83% for the FCCZ structure (face centered cubic unit cell with longitudinal struts) and 50% for the FBCCZ structure (face and body centered cubic unit cell with longitudinal struts). The scaffolds had an elastic modulus of ∼1 GPa and a plateau strength of 8-58 MPa, which fall within the values of trabecular bone (0.2-5 GPa for elastic modulus and 4-70 MPa for compressive strength). The SLM-manufactured ß-Ti35Zr28Nb alloy showed good corrosion properties. MTS assay revealed that both the FCCZ and FBCCZ scaffolds had a cell viability similar to the control. SEM observation indicated that the osteoblast-like cells adhered, spread and grew healthily on the surface of both scaffolds after culture for 7, 14 and 28 d, demonstrating good biocompatibility. Overall, the SLM-manufactured Ti35Zr28Nb scaffolds possess promising potential as hard-tissue implant materials due to their appropriate mechanical properties, good corrosion behavior and biocompatibility. STATEMENT OF SIGNIFICANCE: Novel ß Ti35Zr28Nb alloy scaffolds with FCCZ and FBCCZ structures were successfully fabricated by selective laser melting (SLM) for biomedical applications. The scaffolds showed values of elastic modulus of ∼1 GPa and plateau strength of 8-58 MPa, which fall within the ranges of the mechanical properties of trabecular bone. The SLM-manufactured ß Ti35Zr28Nb alloy showed good corrosion properties. Both SLM-manufactured FCCZ and FBCCZ scaffolds exhibited good biocompatibility, with osteoblast-like cells attaching, growing, and spreading in a healthy way on their surfaces after culturing for different periods up to 28 d.


Asunto(s)
Aleaciones , Materiales Biocompatibles , Sustitutos de Huesos , Rayos Láser , Ensayo de Materiales , Osteoblastos/metabolismo , Aleaciones/química , Aleaciones/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Línea Celular , Módulo de Elasticidad , Humanos , Niobio/química , Niobio/farmacología , Osteoblastos/citología , Silicatos/química , Silicatos/farmacología , Propiedades de Superficie , Titanio/química , Titanio/farmacología , Circonio/química , Circonio/farmacología
18.
Adv Exp Med Biol ; 1030: 95-129, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29081051

RESUMEN

The ability to fabricate artificial tissue constructs through the controlled organisation of cells, structures and signals within a biomimetic scaffold offers significant promise to the field of regenerative medicine, drug delivery and tissue engineering. Advances in additive manufacturing technologies have facilitated the printing of spatially defined cell-laden artificial tissue constructs capable of providing biomimetic spatiotemporal presentation of biological and physical cues to cells in a designed multicomponent structure. Despite significant progress in the field of bioprinting, a key challenge remains in developing and utilizing materials that can adequately recapitulate the complexities of the native extracellular matrix on a nanostructured, chemical level during the printing process. This gives rise to the need for suitable materials - particularly in establishing effective control over cell fate, tissue vascularization and innervation. Recently, significant interested has been invested into developing candidate materials using protein and peptide-derived biomaterials. The ability of these materials to form highly printable hydrogels which are reminiscent of the native ECM has seen significant use in a variety of regenative applications, including both organ bioprinting and non-organ bioprinting. Here, we discuss the emerging technologies for peptide-based bioprinting applications, highlighting bioink development and detailing bioprinter processors. Furthermore, this work presents application specific, peptide-based bioprinting approaches, and provides insight into current limitations and future perspectives of peptide-based bioprinting techniques.


Asunto(s)
Materiales Biocompatibles/química , Bioimpresión/métodos , Péptidos/química , Proteínas/química , Animales , Materiales Biocompatibles/metabolismo , Biomimética/métodos , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Humanos , Hidrogeles/química , Hidrogeles/metabolismo , Péptidos/metabolismo , Proteínas/metabolismo , Medicina Regenerativa/métodos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
19.
Mater Sci Eng C Mater Biol Appl ; 61: 324-32, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26838856

RESUMEN

Diamond has shown great potential in different biomedical applications, but the effects of sterilization on its properties have not been investigated. Here, we studied the influence of five sterilization techniques (solvent cleaning, oxygen plasma, UV irradiation, autoclave and hydrogen peroxide) on nitrogen-included ultrananocrystalline diamond. The chemical modification of the diamond surface was evaluated using X-ray photoelectron spectroscopy and water contact angle measurements. Different degrees of surface oxidation and selective sp(2) bonded carbon etching were found following all sterilization techniques, resulting in an increase of hydrophilicity. Higher viabilities of in vitro mouse 3T3 fibroblasts and rat cortical neuron cells were observed on oxygen plasma, autoclave and hydrogen peroxide sterilized diamond, which correlated with their higher hydrophilicity. By examination of apatite formation in simulated body fluid, in vivo bioactivity was predicted to be best on those surfaces which have been oxygen plasma treated and lowest on those which have been exposed to UV irradiation. The charge injection properties were also altered by the sterilization process and there appears to be a correlation between these changes and the degree of oxygen termination of the surface. We find that the modification brought by autoclave, oxygen plasma and hydrogen peroxide were most consistent with the use of N-UNCD in biological applications as compared to samples sterilized by solvent cleaning or UV exposure or indeed non-sterilized. A two-step process of sterilization by hydrogen peroxide following oxygen plasma treatment was then suggested. However, the final choice of sterilization technique will depend on the intended end application.


Asunto(s)
Diamante/química , Nanopartículas/química , Nitrógeno/química , Esterilización/métodos , Células 3T3 , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Diamante/farmacología , Calor , Peróxido de Hidrógeno/química , Interacciones Hidrofóbicas e Hidrofílicas , Láseres de Gas , Ratones , Espectroscopía de Fotoelectrones , Ratas , Propiedades de Superficie , Rayos Ultravioleta
20.
Biomaterials ; 83: 127-41, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26773669

RESUMEN

One of the critical issues in orthopaedic regenerative medicine is the design of bone scaffolds and implants that replicate the biomechanical properties of the host bones. Porous metals have found themselves to be suitable candidates for repairing or replacing the damaged bones since their stiffness and porosity can be adjusted on demands. Another advantage of porous metals lies in their open space for the in-growth of bone tissue, hence accelerating the osseointegration process. The fabrication of porous metals has been extensively explored over decades, however only limited controls over the internal architecture can be achieved by the conventional processes. Recent advances in additive manufacturing have provided unprecedented opportunities for producing complex structures to meet the increasing demands for implants with customized mechanical performance. At the same time, topology optimization techniques have been developed to enable the internal architecture of porous metals to be designed to achieve specified mechanical properties at will. Thus implants designed via the topology optimization approach and produced by additive manufacturing are of great interest. This paper reviews the state-of-the-art of topological design and manufacturing processes of various types of porous metals, in particular for titanium alloys, biodegradable metals and shape memory alloys. This review also identifies the limitations of current techniques and addresses the directions for future investigations.


Asunto(s)
Huesos/fisiología , Metales/química , Metales/farmacología , Ortopedia , Prótesis e Implantes , Andamios del Tejido/química , Animales , Huesos/efectos de los fármacos , Humanos , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA