Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Chem Senses ; 462021 01 01.
Article En | MEDLINE | ID: mdl-34718440

The T1R and T2R families of G protein-coupled receptors (GPCRs) initiate tastant perception by signaling via guanine nucleotide exchange and hydrolysis performed by associated heterotrimeric G proteins (Gαßγ). Heterotrimeric G protein signal termination is sped up by Gα-directed GTPase-accelerating proteins (GAPs) known as the Regulators of G protein Signaling (RGS proteins). Of this family, RGS21 is highly expressed in lingual epithelial cells and we have shown it acting in vitro to decrease the potency of bitterants on cultured cells. However, constitutive RGS21 loss in mice reduces organismal response to GPCR-mediated tastants-opposite to expectations arising from observed in vitro activity of RGS21 as a GAP and inhibitor of T2R signaling. Here, we show reduced quinine aversion and reduced sucrose preference by mice lacking RGS21 does not result from post-ingestive effects, as taste-salient brief-access tests confirm the reduced bitterant aversion and reduced sweetener preference seen using two-bottle choice testing. Eliminating Rgs21 expression after chemosensory system development, via tamoxifen-induced Cre recombination in eight week-old mice, led to a reduction in quinine aversive behavior that advanced over time, suggesting that RGS21 functions as a negative regulator to sustain stable bitter tastant reception. Consistent with this notion, we observed downregulation of multiple T2R proteins in the lingual tissue of Rgs21-deficient mice. Reduced tastant-mediated responses exhibited by mice lacking Rgs21 expression either since birth or in adulthood has highlighted the potential requirement for a GPCR GAP to maintain the full character of tastant signaling, likely at the level of mitigating receptor downregulation.


RGS Proteins , Animals , GTP-Binding Proteins , Mice , RGS Proteins/genetics , RGS Proteins/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Taste
2.
Exp Physiol ; 106(6): 1343-1358, 2021 06.
Article En | MEDLINE | ID: mdl-33913209

NEW FINDINGS: What is the central question of this study? Thoracic perivascular adipose tissue (tPVAT) is known to, in part, regulate aortic function: what are the effects of unpredictable chronic mild stress (UCMS) on the tPVAT regulation of aortic function and what is the role of exercise training in alleviating the potential negative actions of UCMS on tPVAT? What is the main finding and its importance? UCMS causes tPVAT to disrupt endothelium-dependent dilatation, increases inflammatory cytokine production and diminishes tPVAT-adiponectin. Exercise training proved efficacious in preventing tPVAT-mediated disruption of aortic function. The data support a tPVAT mechanism through which chronic stress negatively impacts vascular health, which adds to our knowledge of how psychological disorders might increase the risk of cardiovascular disease. ABSTRACT: Chronic stress is a major risk for cardiovascular disease. Perivascular adipose tissue (PVAT) has been shown to regulate vascular function; however, the impact of chronic stress and the comorbidity of metabolic syndrome (MetS) on thoracic (t)PVAT is unknown. Additionally, aerobic exercise training (AET) is known to combat the pathology of MetS and chronic stress, but the role of tPVAT in these actions is also unknown. Therefore, the purpose of this study was to examine the effects of unpredictable chronic mild stress (UCMS) on the tPVAT regulation of aortic function and the preventative effect of AET. Lean (LZR) and obese (OZR) Zucker rats (16-17 weeks old) were exposed to 8 weeks of UCMS with and without treadmill exercise (AET). In LZR, UCMS impaired aortic endothelium-dependent dilatation (EDD) (assessed ex vivo by wire myography) and aortic stiffness (assessed by elastic modulus) with no change in OZR subject to UCMS. However, both LZR and OZR UCMS tPVAT impaired EDD compared to respective controls. LZR and OZR subject to UCMS had higher oxidative stress production, diminished adiponectin and impaired aortic nitric oxide levels. Divergently, UCMS induced greater inflammatory cytokine production in LZR UCMS tPVAT, but not in OZR UCMS tPVAT. AET prevented the tPVAT impairment of aortic relaxation with UCMS in LZR and OZR. Additionally, AET reduced aortic stiffness in both LZR and OZR. These beneficial effects on tPVAT regulation of the aorta are likely due to AET preservation of adiponectin, reduced oxidative stress and inflammation, and enhanced nitric oxide. UCMS impaired tPVAT-regulated aortic function in LZR, and augmented MetS-induced EDD in OZR. Conversely, AET in combination with UCMS largely preserved aortic function and the tPVAT environment, in both groups.


Metabolic Syndrome , Adipose Tissue/metabolism , Animals , Aorta/metabolism , Obesity/metabolism , Rats , Rats, Zucker
3.
Redox Biol ; 26: 101285, 2019 09.
Article En | MEDLINE | ID: mdl-31374361

The aim of the study was to determine the effects of exercise training on improving the thoracic perivascular adipose tissue (tPVAT) phenotype (inflammation, oxidative stress, and proteasome function) in metabolic syndrome and its subsequent actions on aortic function. METHODS: Lean and obese (model of metabolic syndrome) Zucker rats (n=8/group) underwent 8-weeks of control conditions or treadmill exercise (70% of max speed, 1 h/day, 5 days/week). At the end of the intervention, the tPVAT was removed and conditioned media was made. The cleaned aorta was attached to a force transducer to assess endothelium-dependent and independent dilation in the presence or absence of tPVAT-conditioned media. tPVAT gene expression, inflammatory /oxidative phenotype, and proteasome function were assessed. RESULTS: The main findings were that Ex induced: (1) a beige-like, anti-inflammatory tPVAT phenotype; (2) a greater abundance of •NO in tPVAT; (3) a reduction in tPVAT oxidant production; and (4) an improved tPVAT proteasome function. Regarding aortic function, endothelium-dependent dilation was greater in exercised lean and obese groups vs. controls (p < 0.05). Lean control tPVAT improved aortic relaxation, whereas obese control tPVAT decreased aortic relaxation. In contrast, the obese Ex-tPVAT increased aortic dilation, whereas the lean Ex-tPVAT did not affect aortic dilation. CONCLUSION: Overall, exercise had the most dramatic impact on the obese tPVAT reflecting a change towards an environment with less oxidant load, less inflammation and improved proteasome function. Such beneficial changes to the tPVAT micro-environment with exercise likely played a significant role in mediating the improvement in aortic function in metabolic syndrome following 8 weeks of exercise.


Adipose Tissue/metabolism , Aorta/metabolism , Aorta/physiopathology , Metabolic Syndrome/metabolism , Metabolic Syndrome/physiopathology , Physical Conditioning, Animal , Animals , Cytokines/metabolism , Male , Models, Molecular , Nitric Oxide/metabolism , Oxidative Stress , Phenotype , Rats
4.
Exp Physiol ; 103(5): 761-776, 2018 05 01.
Article En | MEDLINE | ID: mdl-29436736

NEW FINDINGS: What is the central question of this study? How does chronic stress impact cerebrovascular function and does metabolic syndrome accelerate the cerebrovascular adaptations to stress? What role does exercise training have in preventing cerebrovascular changes to stress and metabolic syndrome? What is the main finding and its importance? Stressful conditions lead to pathological adaptations of the cerebrovasculature via an oxidative nitric oxide pathway, and the presence of metabolic syndrome produces a greater susceptibility to stress-induced cerebrovascular dysfunction. The results also provide insight into the mechanisms that may contribute to the influence of stress and the role of exercise in preventing the negative actions of stress on cerebrovascular function and structure. ABSTRACT: Chronic unresolvable stress leads to the development of depression and cardiovascular disease. There is a high prevalence of depression with the metabolic syndrome (MetS), but to what extent the MetS concurrent with psychological stress affects cerebrovascular function is unknown. We investigated the differential effect of MetS on cerebrovascular structure/function in rats (16-17 weeks old) following 8 weeks of unpredictable chronic mild stress (UCMS) and whether exercise training could limit any cerebrovascular dysfunction. In healthy lean Zucker rats (LZR), UCMS decreased (28%, P < 0.05) ex vivo middle cerebral artery (MCA) endothelium-dependent dilatation (EDD), but changes in MCA remodelling and stiffness were not evident, though cerebral microvessel density (MVD) decreased (30%, P < 0.05). The presence of UCMS and MetS (obese Zucker rats; OZR) decreased MCA EDD (35%, P < 0.05) and dilatation to sodium nitroprusside (20%, P < 0.05), while MCA stiffness increased and cerebral MVD decreased (31%, P < 0.05), which were linked to reduced nitric oxide and increased oxidative levels. Aerobic exercise prevented UCMS impairments in MCA function and MVD in LZR, and partly restored MCA function, stiffness and MVD in OZR. Our data suggest that the benefits of exercise with UCMS were due to a reduction in oxidative stress and increased production of nitric oxide in the cerebral vessels. In conclusion, UCMS significantly impaired MCA structure and function, but the effects of UCMS were more substantial in OZR vs. LZR. Importantly, aerobic exercise when combined with UCMS prevented the MCA dysfunction through subtle shifts in nitric oxide and oxidative stress in the cerebral microvasculature.


Cardiovascular Diseases/physiopathology , Metabolic Syndrome/physiopathology , Physical Conditioning, Animal/physiology , Stress, Psychological/physiopathology , Animals , Depression/physiopathology , Endothelium, Vascular/physiopathology , Male , Middle Cerebral Artery/physiopathology , Nitric Oxide/metabolism , Oxidative Stress/physiology , Rats , Rats, Zucker , Vasodilation/physiology
5.
Exp Physiol ; 103(4): 590-603, 2018 04 01.
Article En | MEDLINE | ID: mdl-29349831

NEW FINDINGS: What is the central question of this study? Tumour necrosis factor-α (TNFα) has been shown to impair vascular function, but the impact of thoracic aorta perivascular adipose tissue (tPVAT)-derived TNFα on tPVAT and aortic function in metabolic syndrome is unknown. What is the main finding and its importance? Release of TNFα by tPVAT causes production of reactive oxygen species in tPVAT through activation of an NADPH-oxidase 2 (NOX2)-dependent pathway, activates production of aortic reactive oxygen species and mediates aortic stiffness, potentially through matrix metalloproteinase 9 activity. Neutralization of TNFα and/or inhibition of NOX2 blocks the tPVAT-induced impairment of aortic function. These data partly implicate tPVAT NOX2 and TNFα in mediating the vascular pathology of metabolic syndrome. ABSTRACT: Perivascular adipose tissue (PVAT) is recognized for its vasoactive effects, but it is unclear how metabolic syndrome impacts thoracic aorta (t)PVAT and the subsequent effect on functional and structural aortic stiffness. Thoracic aorta and tPVAT were removed from 16- to 17-week-old lean (LZR, n = 16) and obese Zucker rats (OZR, n = 16). The OZR presented with aortic endothelial dysfunction, assessed by wire myography, and increased aortic stiffness, assessed by elastic modulus. The OZR tPVAT exudate further exacerbated the endothelial dysfunction, reducing nitric oxide and endothelium-dependent relaxation (P < 0.05). Additionally, OZR tPVAT exudate had increased MMP9 activity (P < 0.05) and further increased the elastic modulus of the aorta after 72 h of co-culture (P < 0.05). We found that the observed aortic dysfunction caused by OZR tPVAT was mediated through increased production and release of tumour necrosis factor-α (TNFα; P < 0.01), which was dependent on tPVAT NADPH-oxidase 2 (NOX2) activity. The OZR tPVAT release of reactive oxygen species and subsequent aortic dysfunction were inhibited by TNFα neutralization and/or inhibition of NOX2. Additionally, we found that OZR tPVAT had reduced activity of the active sites of the 20S proteasome (P < 0.05) and reduced superoxide dismutase activity (P < 0.01). In conclusion, metabolic syndrome causes tPVAT dysfunction through an interplay between TNFα and NOX2 that leads to tPVAT-mediated aortic stiffness by activation of aortic reactive oxygen species and increased MMP9 activity.


Adipose Tissue/metabolism , Adipose Tissue/physiopathology , Aorta/metabolism , Aorta/physiopathology , Metabolic Syndrome/physiopathology , NADPH Oxidase 2/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Male , Matrix Metalloproteinase 9/metabolism , Metabolic Syndrome/metabolism , Nitric Oxide/metabolism , Proteasome Endopeptidase Complex/metabolism , Rats , Rats, Zucker , Reactive Oxygen Species/metabolism , Signal Transduction/physiology
6.
Med Sci Sports Exerc ; 50(5): 957-966, 2018 05.
Article En | MEDLINE | ID: mdl-29271845

PURPOSE: The present study examined the effect of unpredictable chronic mild stress (UCMS) on peripheral microvessel function in healthy and metabolic syndrome (MetS) rodents and whether exercise training could prevent the vascular dysfunction associated with UCMS. METHODS: Lean and obese (model of MetS) Zucker rats (LZR and OZR) were exposed to 8 wk of UCMS, exercise (Ex), UCMS + Ex, or control conditions. At the end of the intervention, gracilis arterioles (GA) were isolated and hung in a pressurized myobath to assess endothelium-dependent (EDD) and endothelium-independent (EID) dilation. Levels of nitric oxide (NO) and reactive oxygen species (ROS) were measured through 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate and dihydroethidium staining, respectively. RESULTS: Compared with LZR controls, EDD and EID were lower (P = 0.0001) in LZR-UCMS. The OZR-Ex group had a higher EDD (P = 0.0001) and EID (P = 0.003) compared with OZR controls, whereas only a difference in EDD (P = 0.01) was noted between the LZR-control and LZR-Ex groups. Importantly, EDD and EID were higher in the LZR (P = 0.0001; P = 0.02) and OZR (P = 0.0001; P = 0.02) UCMS + Ex groups compared with UCMS alone. Lower NO bioavailability and higher ROS were noted in the LZR-UCMS group (P = 0.0001), but not OZR-UCMS, compared with controls. The Ex and UCMS-Ex groups had higher NO bioavailability (P = 0.0001) compared with the control and UCMS groups, but ROS levels remained high. CONCLUSIONS: The comorbidity between UCMS and MetS does not exacerbate the effects of one another on GA EDD responses, but does lead to the development of other vasculopathy adaptations, which can be partially explained by alterations in NO and ROS production. Importantly, exercise training alleviates most of the negative effects of UCMS on GA function.


Metabolic Syndrome/physiopathology , Microvessels/physiopathology , Physical Conditioning, Animal , Stress, Physiological , Vascular Diseases/physiopathology , Vascular Remodeling , Adaptation, Physiological , Animals , Disease Models, Animal , Male , Metabolic Syndrome/complications , Nitric Oxide/metabolism , Rats, Zucker , Reactive Oxygen Species/metabolism , Vascular Diseases/complications
7.
J Appl Physiol (1985) ; 124(3): 573-582, 2018 03 01.
Article En | MEDLINE | ID: mdl-29097631

Proponents for electronic cigarettes (E-cigs) claim that they are a safe alternative to tobacco-based cigarettes; however, little is known about the long-term effects of exposure to E-cig vapor on vascular function. The purpose of this study was to determine the cardiovascular consequences of chronic E-cig exposure. Female mice (C57BL/6 background strain) were randomly assigned to chronic daily exposure to E-cig vapor, standard (3R4F reference) cigarette smoke, or filtered air ( n = 15/group). Respective whole body exposures consisted of four 1-h-exposure time blocks, separated by 30-min intervals of fresh air breaks, resulting in intermittent daily exposure for a total of 4 h/day, 5 days/wk for 8 mo. Noninvasive ultrasonography was used to assess cardiac function and aortic arterial stiffness (AS), measured as pulse wave velocity, at three times points (before, during, and after chronic exposure). Upon completion of the 8-mo exposure, ex vivo wire tension myography and force transduction were used to measure changes in thoracic aortic tension in response to vasoactive-inducing compounds. AS increased 2.5- and 2.8-fold in E-cig- and 3R4F-exposed mice, respectively, compared with air-exposed control mice ( P < 0.05). The maximal aortic relaxation to methacholine was 24% and 33% lower in E-cig- and 3R4F-exposed mice, respectively, than in controls ( P < 0.05). No differences were noted in sodium nitroprusside dilation between the groups. 3R4F exposure altered cardiac function by reducing fractional shortening and ejection fraction after 8 mo ( P < 0.05). A similar, although not statistically significant, tendency was also observed with E-cig exposure ( P < 0.10). Histological and respiratory function data support emphysema-associated changes in 3R4F-exposed, but not E-cig-exposed, mice. Chronic exposure to E-cig vapor accelerates AS, significantly impairs aortic endothelial function, and may lead to impaired cardiac function. The clinical implication from this study is that chronic use of E-cigs, even at relatively low exposure levels, induces cardiovascular dysfunction. NEW & NOTEWORTHY Electronic cigarettes (E-cigs) are marketed as safe, but there has been insufficient long-term exposure to humans to justify these claims. This is the first study to report the long-term in vivo vascular consequences of 8 mo of exposure to E-cig vapor in mice (equivalent to ~25 yr of exposure in humans). We report that E-cig exposure increases arterial stiffness and impairs normal vascular reactivity responses, similar to other risk factors, including cigarette smoking, which contribute to the development of cardiovascular disease.


Cardiovascular Diseases/etiology , Vaping/adverse effects , Animals , Echocardiography , Electronic Nicotine Delivery Systems , Female , Mice , Mice, Inbred C57BL , Pulse Wave Analysis , Random Allocation , Respiratory Function Tests , Vascular Stiffness
8.
Exp Physiol ; 102(10): 1321-1331, 2017 10 01.
Article En | MEDLINE | ID: mdl-28737253

NEW FINDINGS: What is the central question of this study? Does a stroke event influence aortic endothelial function; and what is the role of peripheral circulating leucocytes in stroke on the vascular reactivity of the aorta? What is the main finding and its importance? In vitro co-culture experiments demonstrated that aortic endothelium-dependent relaxation was impaired when rat aortic rings were co-cultured with leucocytes stimulated with serum from stroke patients. Impaired vascular reactivity was not observed in aortic rings without leucocytes stimulated with serum from stroke patients or age-matched control patients with or without leucocytes. These data suggest that leucocyte-dependent altered aortic endothelium-dependent relaxation with stroke and the systemic consequences of stroke on vascular inflammation may occur in the aorta. Post-stroke inflammation has been linked to poor stroke outcomes. The vascular endothelium senses and responds to circulating factors, in particular inflammatory cytokines. Although stroke-associated local cerebrovascular dysfunction is well reported, the effects of a stroke on conduit artery function are not fully understood. We tested the hypothesis that serum from stroke patients triggers leucocyte-dependent aortic endothelial dysfunction that is associated with elevated concentrations of cytokines. Total leucocytes were isolated from healthy individuals, and the cells were incubated in serum from control subjects or stroke patients for 6 h. The quantity of cytokines in media was determined using an immunoassay. Vascular reactivity was determined by the rat aortic rings that were co-cultured with or without leucocytes and stimulated with serum samples from control subjects or stroke patients. Endothelium-dependent dilatation was significantly impaired in aortic rings co-cultured with leucocytes plus serum from stroke patients (50 ± 30 versus 85 ± 13%, P < 0.05) versus serum from control subjects. In contrast, no difference was observed in aortic function stimulated with serum from control subjects or stroke patients without total leucocytes. Likewise, total leucocyte-derived cytokine concentrations were significantly increased in a time-dependent manner on stimulation with serum from stroke patients (P < 0.05). These observations support the concept that the increased response of leucocytes drives the development of stroke-associated vascular endothelial dysfunction. As such, pharmacologically targeting the source of inflammatory cytokines might alleviate stroke-associated peripheral vascular dysfunction.


Aorta/physiology , Leukocytes/physiology , Stroke/physiopathology , Vascular Diseases/physiopathology , Adult , Animals , Aorta/metabolism , Arteries/metabolism , Arteries/physiopathology , Coculture Techniques/methods , Cytokines/metabolism , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Female , Humans , Inflammation/metabolism , Inflammation/physiopathology , Leukocytes/metabolism , Male , Rats , Rats, Sprague-Dawley , Stroke/metabolism , Vascular Diseases/metabolism , Vasodilation/physiology , Young Adult
9.
Microcirculation ; 22(6): 435-45, 2015 Aug.
Article En | MEDLINE | ID: mdl-26014499

OBJECTIVE: Chronic presentation of the MS is associated with an increased likelihood for stroke and poor stroke outcomes following occlusive cerebrovascular events. However, the physiological mechanisms contributing to compromised outcomes remain unclear, and the degree of cerebral cortical MVD may represent a central determinant of stroke outcomes. METHODS: This study used the OZR model of MS and clinically relevant, chronic interventions to determine the impact on cerebral cortical microvascular rarefaction via immunohistochemistry with a parallel determination of cerebrovascular function to identify putative mechanistic contributors. RESULTS: OZR exhibited a progressive rarefaction (to ~80% control MVD) of the cortical microvascular networks vs. lean Zucker rats. Chronic treatment with antihypertensive agents (captopril/hydralazine) had limited effectiveness in blunting rarefaction, although treatments improving glycemic control (metformin/rosiglitazone) were superior, maintaining ~94% control MVD. Chronic treatment with the antioxidant TEMPOL severely blunted rarefaction in OZR, although this ameliorative effect was prevented by concurrent NOS inhibition. CONCLUSIONS: Further analyses revealed that the maintenance of glycemic control and vascular NO bioavailability were stronger predictors of cerebral cortical MVD in OZR than was prevention of hypertension, and this may have implications for chronic treatment of CVD risk under stroke-prone conditions.


Cerebral Cortex , Cerebrovascular Circulation , Insulin Resistance , Metabolic Syndrome , Microcirculation , Nitric Oxide/metabolism , Animals , Cerebral Cortex/blood supply , Cerebral Cortex/metabolism , Cerebral Cortex/physiopathology , Disease Models, Animal , Male , Metabolic Syndrome/complications , Metabolic Syndrome/metabolism , Metabolic Syndrome/physiopathology , Rats , Rats, Zucker , Stroke/etiology , Stroke/metabolism , Stroke/physiopathology , Stroke/prevention & control
...