Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Materials (Basel) ; 17(6)2024 Mar 17.
Article En | MEDLINE | ID: mdl-38541532

The corrosion protection property of three Brij-type surfactants, namely, Brij 35, Brij 56 and Brij 58P, was considered on OLC 45 carbon steel in a 0.5 M H2SO4 medium. The efficacy for these organic compounds was examined using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods, scanning electron microscopy (SEM) procedures, and Fourier transform infrared (FT-IR) spectroscopy. We hypothesized that these surfactants hinder the corrosion for OLC 45 samples through a protecting mechanism owing to the adsorption of organic molecules that form an inhibitive film or through the formation of complex oxides. These surfactants exhibited an appreciable protective effect against OLC 45 corrosion, operating as mixed inhibitors, as could be demonstrated by their influence on the electrochemical characteristics of the metallic substrates. The adsorption of surfactants over the substrates zone conformed to the representation of the Langmuir isotherm. The effect of temperature on the electrochemical comportment of the OLC 45 specimens in H2SO4 without and with Brij at 800 ppm was examined in the temperature interval of 293 to 333 K. The negative estimate of thermodynamic attributed as Gibbs free energy of adsorption presented the spontaneity of the adsorption activity. The investigation with FT-IR and SEM established the adsorption of Brij and the constitution of the corrosive components on the OLC 45 surface. Electrochemical determinations of these surfactants indicated its anticorrosion inhibition performance and the highest inhibition of 96% was reached when the Brij 35 concentration was at 800 or 1000 ppm, while for Brij 56 and Brij 58P, the highest inhibition was obtained when their concentrations were 500, 800, or 1000 ppm.

2.
Materials (Basel) ; 15(17)2022 Aug 31.
Article En | MEDLINE | ID: mdl-36079388

Materials used in the marine industry are exposed to extreme conditions, so it is necessary to meet remarkable characteristics, such as mechanical resistance, low density, and good corrosion resistance. The challenging environment requires continuous performance improvements, so this work is focused on developing new materials with superior properties, using the electrochemical deposition technique, which are convenient for marine engineering. High-entropy alloys have been attracting tremendous interest in many applications, due to their simple crystal structures and advantageous physical-chemical properties, such as high strength, anti-corrosion, erosion, and electro-magnetic capabilities. To identify the most appropriate compositions, MatCalc software was used to predict the structure and characteristics of the required materials, and thermodynamic and kinetic criteria calculations were performed. The modelling processes generated a series of optimal compositions in the AlCrCuFeNi alloy system, that are suitable to be used in anticorrosive and tribological applications. The composition and morphology of the obtained high entropy alloy thin films revealed a uniform structure, with a small grain profile. The corrosion resistance was investigated in artificial seawater to observe the behavior of the newly developed materials in demanding conditions, and the results showed improved results compared to the copper foil substrate.

...