Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
1.
Magn Reson Med ; 91(3): 860-885, 2024 Mar.
Article En | MEDLINE | ID: mdl-37946584

Brain cell structure and function reflect neurodevelopment, plasticity, and aging; and changes can help flag pathological processes such as neurodegeneration and neuroinflammation. Accurate and quantitative methods to noninvasively disentangle cellular structural features are needed and are a substantial focus of brain research. Diffusion-weighted MRS (dMRS) gives access to diffusion properties of endogenous intracellular brain metabolites that are preferentially located inside specific brain cell populations. Despite its great potential, dMRS remains a challenging technique on all levels: from the data acquisition to the analysis, quantification, modeling, and interpretation of results. These challenges were the motivation behind the organization of the Lorentz Center workshop on "Best Practices & Tools for Diffusion MR Spectroscopy" held in Leiden, the Netherlands, in September 2021. During the workshop, the dMRS community established a set of recommendations to execute robust dMRS studies. This paper provides a description of the steps needed for acquiring, processing, fitting, and modeling dMRS data, and provides links to useful resources.


Brain , Diffusion Magnetic Resonance Imaging , Consensus , Brain/metabolism , Magnetic Resonance Spectroscopy/methods , Diffusion , Diffusion Magnetic Resonance Imaging/methods
2.
Front Neurosci ; 17: 1258408, 2023.
Article En | MEDLINE | ID: mdl-38144210

Introduction: Diffusion-weighted magnetic resonance spectroscopy (DW-MRS) offers improved cellular specificity to microstructure-compared to water-based methods alone-but spatial resolution and SNR is severely reduced and slow-diffusing metabolites necessitate higher b-values to accurately characterize their diffusion properties. Ultra-strong gradients allow access to higher b-values per-unit time, higher SNR for a given b-value, and shorter diffusion times, but introduce additional challenges such as eddy-current artefacts, gradient non-uniformity, and mechanical vibrations. Methods: In this work, we present initial DW-MRS data acquired on a 3T Siemens Connectom scanner equipped with ultra-strong (300 mT/m) gradients. We explore the practical issues associated with this manner of acquisition, the steps that may be taken to mitigate their impact on the data, and the potential benefits of ultra-strong gradients for DW-MRS. An in-house DW-PRESS sequence and data processing pipeline were developed to mitigate the impact of these confounds. The interaction of TE, b-value, and maximum gradient amplitude was investigated using simulations and pilot data, whereby maximum gradient amplitude was restricted. Furthermore, two DW-MRS voxels in grey and white matter were acquired using ultra-strong gradients and high b-values. Results: Simulations suggest T2-based SNR gains that are experimentally confirmed. Ultra-strong gradient acquisitions exhibit similar artefact profiles to those of lower gradient amplitude, suggesting adequate performance of artefact mitigation strategies. Gradient field non-uniformity influenced ADC estimates by up to 4% when left uncorrected. ADC and Kurtosis estimates for tNAA, tCho, and tCr align with previously published literature. Discussion: In conclusion, we successfully implemented acquisition and data processing strategies for ultra-strong gradient DW-MRS and results indicate that confounding effects of the strong gradient system can be ameliorated, while achieving shorter diffusion times and improved metabolite SNR.

3.
Radiology ; 308(3): e223255, 2023 09.
Article En | MEDLINE | ID: mdl-37668523

Background Noninvasive identification of glioma subtypes is important for optimizing treatment strategies. Purpose To compare the in vivo neurochemical profiles between isocitrate dehydrogenase (IDH) 1-mutant 1p/19q codeleted gliomas and their noncodeleted counterparts measured by MR spectroscopy at 3.0 T with a point-resolved spectroscopy (PRESS) sequence optimized for D-2-hydroxyglutarate (2HG) detection. Materials and Methods Adults with IDH1-mutant gliomas were retrospectively included for this study from two university hospitals (inclusion period: January 2015 to July 2016 and September 2019 to June 2021, respectively) based on availability of 1p/19q codeletion status and a PRESS acquisition optimized for 2HG detection (echo time, 97 msec) at 3.0 T before any treatment. Spectral analysis was performed using LCModel and a simulated basis set. Metabolite quantification was performed using the water signal as a reference and correcting for water and metabolite longitudinal and transverse relaxation time constants. Concentration ratios were computed using total creatine (tCr) and total choline. A two-tailed unpaired t test was used to compare metabolite concentrations obtained in codeleted versus noncodeleted gliomas, accounting for multiple comparisons. Results Thirty-one adults (mean age, 39 years ± 8 [SD]; 19 male) were included, and 19 metabolites were quantified. Cystathionine concentration was higher in codeleted (n = 13) than noncodeleted (n = 18) gliomas when quantification was performed using the water signal or tCr as references (2.33 mM ± 0.98 vs 0.93 mM ± 0.94, and 0.34 mM ± 0.14 vs 0.14 mM ± 0.14, respectively; both P < .001). The sensitivity and specificity of PRESS to detect codeletion by means of cystathionine quantification were 92% and 61%, respectively. Other metabolites did not show evidence of a difference between groups (P > .05). Conclusion Higher cystathionine levels were detected in IDH1-mutant 1p/19q codeleted gliomas than in their noncodeleted counterparts with use of a PRESS sequence optimized for 2HG detection. Of 19 metabolites quantified, only cystathionine showed evidence of a difference in concentration between groups. Clinical trial registry no. NCT01703962 © RSNA, 2023 See also the editorial by Lin in this issue.


Cystathionine , Glioma , Adult , Humans , Male , Creatine , Glioma/diagnostic imaging , Glioma/genetics , Magnetic Resonance Spectroscopy , Receptors, Antigen, T-Cell , Retrospective Studies , Water , Female , Middle Aged
4.
Acta Neuropathol Commun ; 11(1): 47, 2023 03 20.
Article En | MEDLINE | ID: mdl-36941703

Medulloblastoma (MB) is the most common malignant brain tumor occurring in childhood and rarely found in adults. Based on transcriptome profile, MB are currently classified into four major molecular groups reflecting a considerable biological heterogeneity: WNT-activated, SHH-activated, group 3 and group 4. Recently, DNA methylation profiling allowed the identification of additional subgroups within the four major molecular groups associated with different clinic-pathological and molecular features. Isocitrate dehydrogenase-1 and 2 (IDH1 and IDH2) mutations have been described in several tumors, including gliomas, while in MB are rarely reported and not routinely investigated. By means of magnetic resonance spectroscopy (MRS), we unequivocally assessed the presence the oncometabolite D-2-hydroxyglutarate (2HG), a marker of IDH1 and IDH2 mutations, in a case of adult MB. Immunophenotypical work-up and methylation profiling assigned the diagnosis of MB, subclass SHH-A, and molecular testing revealed the presence of the non-canonical somatic IDH1(p.R132C) mutation and an additional GNAS mutation, also rarely described in MB. To the best of our knowledge, this is the first reported case of MB simultaneously harboring both mutations. Of note, tumor exhibited a heterogeneous phenotype with a tumor component displaying glial differentiation, with robust GFAP expression, and a component with conventional MB features and selective presence of GNAS mutation, suggesting co-existence of two different major tumor subclones. These findings drew attention to the need for a deeper genetic characterization of MB, in order to get insights into their biology and improve stratification and clinical management of the patients. Moreover, our results underlined the importance of performing MRS for the identification of IDH mutations in non-glial tumors. The use of throughput molecular profiling analysis and advanced medical imaging will certainly increase the frequency with which tumor entities with rare molecular alterations will be identified. Whether these findings have any specific therapeutic implications or prognostic relevance requires further investigations.


Brain Neoplasms , Cerebellar Neoplasms , Glioma , Medulloblastoma , Humans , Medulloblastoma/diagnostic imaging , Medulloblastoma/genetics , Isocitrate Dehydrogenase/genetics , Magnetic Resonance Spectroscopy/methods , Glioma/genetics , Brain Neoplasms/genetics , Mutation/genetics , Cerebellar Neoplasms/diagnostic imaging , Cerebellar Neoplasms/genetics , High-Throughput Nucleotide Sequencing , Glutarates/metabolism , Chromogranins/genetics , GTP-Binding Protein alpha Subunits, Gs/genetics
5.
Radiology ; 306(3): e220430, 2023 03.
Article En | MEDLINE | ID: mdl-36318030

Background The time course of cellular damage after acute ischemic stroke (IS) is currently not well known, and specific noninvasive markers of microstructural alterations linked to inflammation are lacking, which hinders the monitoring of anti-inflammatory treatment. Purpose To evaluate the temporal pattern of neuronal and glial microstructural changes after stroke using in vivo single-voxel diffusion-weighted MR spectroscopy. Materials and Methods In this prospective longitudinal study, participants with IS and healthy volunteers (HVs) underwent MRI at 3.0 T. In participants with IS, apparent diffusion coefficients (ADCs) and concentrations of total N-acetyl-aspartate (tNAA), total creatine (tCr), and total choline (tCho) were measured in volumes of interest (VOIs), including the lesion VOI (VOIles) and the contralateral VOI (VOIcl) at 2 weeks, 1 month, and 3 months after IS. HVs were examined once, with VOIs located in the same brain regions as participants with IS. Within- and between-group differences and longitudinal changes were examined using linear mixed-effects models. Results Twenty participants with IS (mean age, 61 years ± 13 [SD]; 12 women) and 20 HVs (mean age, 59 years ± 13; 12 women) were evaluated. No differences in ADCs or concentrations were observed in VOIcl between HVs and participants with IS. In participants with IS, the ADC of tCr was higher in VOIles than in VOIcl at 1 month (+14.4%, P = .004) and 3 months after IS (+19.0%, P < .001), while the ADC of tCho was higher only at 1 month (+16.7%, P = .001). No difference in the ADC of tNAA was observed between the two VOIs at any time point. tNAA and tCr concentrations were lower in VOIles than in VOIcl and were stable over time (approximately -50% and -30%, respectively; P < .001). Conclusion High diffusivity of choline-containing compounds and total creatine (tCr) in the ischemic lesion 1 month after ischemic stroke (IS) indicates glial morphologic changes, suggesting that active inflammation is still ongoing at this time point. High tCr diffusivity up to 3 months after IS likely reflects the presence of astrogliosis at the chronic stage of cerebral ischemia. Clinical trial registration no. NCT02833961 © RSNA, 2022 Online supplemental material is available for this article.


Brain Ischemia , Ischemic Stroke , Humans , Female , Middle Aged , Creatine , Ischemic Stroke/diagnostic imaging , Longitudinal Studies , Prospective Studies , Magnetic Resonance Spectroscopy/methods , Brain Ischemia/diagnostic imaging , Choline , Receptors, Antigen, T-Cell
6.
Endocr Relat Cancer ; 30(2)2023 02 01.
Article En | MEDLINE | ID: mdl-36449569

Germline mutations in genes encoding succinate dehydrogenase (SDH) are frequently involved in pheochromocytoma/paraganglioma (PPGL) development and were implicated in patients with the '3PAs' syndrome (associating pituitary adenoma (PA) and PPGL) or isolated PA. However, the causality link between SDHx mutation and PA remains difficult to establish, and in vivo tools for detecting hallmarks of SDH deficiency are scarce. Proton magnetic resonance spectroscopy (1H-MRS) can detect succinate in vivo as a biomarker of SDHx mutations in PGL. The objective of this study was to demonstrate the causality link between PA and SDH deficiency in vivo using 1H-MRS as a novel noninvasive tool for succinate detection in PA. Three SDHx-mutated patients suffering from a PPGL and a macroprolactinoma and one patient with an apparently sporadic non-functioning pituitary macroadenoma underwent MRI examination at 3 T. An optimized 1H-MRS semi-LASER sequence (TR = 2500 ms, TE = 144 ms) was employed for the detection of succinate in vivo. Succinate and choline-containing compounds were identified in the MR spectra as single resonances at 2.44 and 3.2 ppm, respectively. Choline compounds were detected in all the tumors (three PGL and four PAs), while a succinate peak was only observed in the three macroprolactinomas and the three PGL of SDHx-mutated patients, demonstrating SDH deficiency in these tumors. In conclusion, the detection of succinate by 1H-MRS as a hallmark of SDH deficiency in vivo is feasible in PA, laying the groundwork for a better understanding of the biological link between SDHx mutations and the development of these tumors.


Adenoma , Adrenal Gland Neoplasms , Paraganglioma , Pheochromocytoma , Pituitary Neoplasms , Prolactinoma , Humans , Pituitary Neoplasms/genetics , Pituitary Neoplasms/pathology , Mutation , Succinate Dehydrogenase/genetics , Succinate Dehydrogenase/metabolism , Pheochromocytoma/genetics , Paraganglioma/pathology , Adenoma/genetics , Adenoma/pathology , Germ-Line Mutation , Magnetic Resonance Spectroscopy , Adrenal Gland Neoplasms/genetics , Succinic Acid
7.
Neurology ; 100(1): e94-e106, 2023 01 03.
Article En | MEDLINE | ID: mdl-36180241

BACKGROUND AND OBJECTIVES: D-2-hydroxyglutarate (2HG) characterizes IDH-mutant gliomas and can be detected and quantified with edited MRS (MEGA-PRESS). In this study, we investigated the clinical, radiologic, and molecular parameters affecting 2HG levels. METHODS: MEGA-PRESS data were acquired in 71 patients with glioma (24 untreated, 47 treated) on a 3 T system. Eighteen patients were followed during cytotoxic (n = 12) or targeted (n = 6) therapy. 2HG was measured in tumor samples using gas chromatography coupled to mass spectrometry (GCMS). RESULTS: MEGA-PRESS detected 2HG with a sensitivity of 95% in untreated patients and 62% in treated patients. Sensitivity depended on tumor volume (>27 cm3; p = 0.02), voxel coverage (>75%; p = 0.002), and expansive presentation (defined by equal size of T1 and FLAIR abnormalities, p = 0.04). 2HG levels were positively correlated with IDH-mutant allelic fraction (p = 0.03) and total choline levels (p < 0.001) and were higher in IDH2-mutant compared with IDH1 R132H-mutant and non-R132H IDH1-mutant patients (p = 0.002). In patients receiving IDH inhibitors, 2HG levels decreased within a few days, demonstrating the on-target effect of the drug, but 2HG level decrease did not predict tumor response. Patients receiving cytotoxic treatments showed a slower decrease in 2HG levels, consistent with tumor response and occurring before any tumor volume change on conventional MRI. At progression, 1p/19q codeleted gliomas, but not the non-codeleted, showed detectable in vivo 2HG levels, pointing out to different modes of progression characterizing these 2 entities. DISCUSSION: MEGA-PRESS edited MRS allows in vivo monitoring of 2-hydroxyglutarate, confirming efficacy of IDH inhibition and suggests different patterns of tumor progression in astrocytomas compared with oligodendrogliomas.


Brain Neoplasms , Glioma , Humans , Prospective Studies , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Follow-Up Studies , Isocitrate Dehydrogenase/genetics , Glioma/diagnostic imaging , Glioma/genetics , Glioma/drug therapy , Magnetic Resonance Spectroscopy/methods , Glutarates/analysis , Glutarates/therapeutic use , Mutation
8.
Curr Biol ; 32(16): 3564-3575.e5, 2022 08 22.
Article En | MEDLINE | ID: mdl-35961314

Behavioral activities that require control over automatic routines typically feel effortful and result in cognitive fatigue. Beyond subjective report, cognitive fatigue has been conceived as an inflated cost of cognitive control, objectified by more impulsive decisions. However, the origins of such control cost inflation with cognitive work are heavily debated. Here, we suggest a neuro-metabolic account: the cost would relate to the necessity of recycling potentially toxic substances accumulated during cognitive control exertion. We validated this account using magnetic resonance spectroscopy (MRS) to monitor brain metabolites throughout an approximate workday, during which two groups of participants performed either high-demand or low-demand cognitive control tasks, interleaved with economic decisions. Choice-related fatigue markers were only present in the high-demand group, with a reduction of pupil dilation during decision-making and a preference shift toward short-delay and little-effort options (a low-cost bias captured using computational modeling). At the end of the day, high-demand cognitive work resulted in higher glutamate concentration and glutamate/glutamine diffusion in a cognitive control brain region (lateral prefrontal cortex [lPFC]), relative to low-demand cognitive work and to a reference brain region (primary visual cortex [V1]). Taken together with previous fMRI data, these results support a neuro-metabolic model in which glutamate accumulation triggers a regulation mechanism that makes lPFC activation more costly, explaining why cognitive control is harder to mobilize after a strenuous workday.


Cognition , Prefrontal Cortex , Brain/diagnostic imaging , Brain Mapping , Cognition/physiology , Decision Making/physiology , Glutamates , Humans , Prefrontal Cortex/physiology , Reward
9.
Magn Reson Med ; 88(2): 537-545, 2022 08.
Article En | MEDLINE | ID: mdl-35381117

PURPOSE: To evaluate the ability of the PRESS sequence (TE  = 97 ms, optimized for 2-hydroxyglutarate detection) to detect cystathionine in gliomas and the effect of the omission of cystathionine on the quantification of the full neurochemical profile. METHODS: Twenty-three subjects with a glioma were retrospectively included based on the availability of both MEGA-PRESS and PRESS acquisitions at 3T, and the presence of the cystathionine signal in the edited MR spectrum. In eight subjects, the PRESS acquisition was performed also in normal tissue. Metabolite quantification was performed using LCModel and simulated basis sets. The LCModel analysis for the PRESS data was performed with and without cystathionine. RESULTS: All subjects with glioma had detectable cystathionine levels >1 mM with Cramér-Rao lower bounds (CRLB) <15%. The mean cystathionine concentrations were 3.49 ± 1.17 mM for MEGA-PRESS and 2.20 ± 0.80 mM for PRESS data. Cystathionine concentrations showed a significant correlation between the two MRS methods (r = 0.58, p = .004), and it was not detectable in normal tissue. Using PRESS, 19 metabolites were quantified with CRLB <50% for more than half of the subjects. The metabolites that were significantly (p < .0028) and mostly affected by the omission of cystathionine were aspartate, betaine, citrate, γ-aminobutyric acid (GABA), and serine. CONCLUSIONS: Cystathionine was detectable by PRESS in all the selected gliomas, while it was not detectable in normal tissue. The omission from the spectral analysis of cystathionine led to severe biases in the quantification of other neurochemicals that may play key roles in cancer metabolism.


Brain Neoplasms , Glioma , Brain/metabolism , Brain Neoplasms/metabolism , Cystathionine , Glioma/pathology , Humans , Magnetic Resonance Spectroscopy/methods , Retrospective Studies
10.
Brain Behav Immun ; 99: 256-265, 2022 01.
Article En | MEDLINE | ID: mdl-34673176

BACKGROUND: Low-dose lipopolysaccharide (LPS) is a well-established experimental method for inducing systemic inflammation and shown by microscopy to activate microglia in rodents. Currently, techniques for in-vivo imaging of glia in humans are limited to TSPO (Translocator protein) PET, which is expensive, methodologically challenging, and has poor cellular specificity. Diffusion-weighted magnetic resonance spectroscopy (DW-MRS) sensitizes MR spectra to diffusion of intracellular metabolites, potentially providing cell-specific information about cellular morphology. In this preliminary study, we applied DW-MRS to measure changes in the apparent diffusion coefficients (ADC) of glial and neuronal metabolites to healthy participants who underwent an LPS administration protocol. We hypothesized that the ADC of glial metabolites will be selectively modulated by LPS-induced glial activation. METHODS: Seven healthy male volunteers, (mean 25.3 ± 5.9 years) were each tested in two separate sessions once after LPS (1 ng/Kg intravenously) and once after placebo (saline). Physiological responses were monitored during each session and serial blood samples and Profile of Mood States (POMS) completed to quantify white blood cell (WBC), cytokine and mood responses. DW-MRS data were acquired 5-5½ hours after injection from two brain regions: grey matter in the left thalamus, and frontal white matter. RESULTS: Body temperature, heart rate, WBC and inflammatory cytokines were significantly higher in the LPS compared to the placebo condition (p < 0.001). The ADC of the glial metabolite choline (tCho) was also significantly increased after LPS administration compared to placebo (p = 0.008) in the thalamus which scaled with LPS-induced changes in POMS total and negative mood (Adj R2 = 0.83; p = 0.004). CONCLUSIONS: DW-MRS may be a powerful new tool sensitive to glial cytomorphological changes in grey matter induced by systemic inflammation.


Diffusion Magnetic Resonance Imaging , Lipopolysaccharides , Brain/metabolism , Choline/metabolism , Choline/pharmacology , Diffusion Magnetic Resonance Imaging/methods , Humans , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Magnetic Resonance Spectroscopy/methods , Male , Neuroglia/metabolism , Receptors, GABA/metabolism
11.
Sci Rep ; 11(1): 13101, 2021 06 23.
Article En | MEDLINE | ID: mdl-34162958

Huntington's disease (HD) is a monogenic, fully penetrant neurodegenerative disorder. Widespread white matter damage affects the brain of patients with HD at very early stages of the disease. Fixel-based analysis (FBA) is a novel method to investigate the contribution of individual crossing fibers to the white matter damage and to detect possible alterations in both fiber density and fiber-bundle morphology. Diffusion-weighted magnetic resonance spectroscopy (DW-MRS), on the other hand, quantifies the motion of brain metabolites in vivo, thus enabling the investigation of microstructural alteration of specific cell populations. The aim of this study was to identify novel specific microstructural imaging markers of white matter degeneration in HD, by combining FBA and DW-MRS. Twenty patients at an early stage of HD and 20 healthy controls were recruited in a monocentric study. Using diffusion imaging we observed alterations to the brain microstructure and their morphology in patients with HD. Furthermore, FBA revealed specific fiber populations that were affected by the disease. Moreover, the mean diffusivity of the intra-axonal metabolite N-acetylaspartate, co-measured with N-acetylaspartylglutamate (tNAA), was significantly reduced in the corpus callosum of patients compared to controls. FBA and DW-MRS of tNAA provided more specific information about the biological mechanisms underlying HD and showed promise for early investigation of white matter degeneration in HD.


Huntington Disease/pathology , White Matter/pathology , Adult , Brain/diagnostic imaging , Brain/pathology , Case-Control Studies , Diffusion Magnetic Resonance Imaging , Disease Progression , Female , Humans , Huntington Disease/diagnostic imaging , Male , Middle Aged , Neuroimaging , White Matter/diagnostic imaging
12.
Mult Scler ; 27(4): 528-538, 2021 04.
Article En | MEDLINE | ID: mdl-33566723

BACKGROUND: Diffusion-weighted 1H magnetic resonance spectroscopy (DW-MRS) allows to quantify creatine-phosphocreatine brain diffusivity (ADC(tCr)), whose reduction in multiple sclerosis (MS) has been proposed as a proxy of energy dysfunction. OBJECTIVE: To investigate whether thalamic ADC(tCr) changes are associated with thalamo-cortical tract damage in MS. METHODS: Twenty patients with MS and 13 healthy controls (HC) were enrolled in a DW-MRS and DW imaging (DWI) study. From DW-MRS, ADC(tCr) and total N-acetyl-aspartate diffusivity (ADC(tNAA)) were extracted in the thalami. Three thalamo-cortical tracts and one non-thalamic control tract were reconstructed from DWI. Fractional anisotropy (FA), mean (MD), axial (AD), and radial diffusivity (RD), reflecting microstructural integrity, were extracted for each tract. Associations between thalamic ADC(tCr) and tract metrics were assessed using linear regression models adjusting for age, sex, thalamic volume, thalamic ADC(tNAA), and tract-specific lesion load. RESULTS: Lower thalamic ADC(tCr) was associated with higher MD and RD of thalamo-cortical projections in MS (MD: p = 0.029; RD: p = 0.017), but not in HC (MD: p = 0.625, interaction term between thalamic ADC(tCr) and group = 0.019; RD: p = 0.320, interaction term = 0.05). Thalamic ADC(tCr) was not associated with microstructural changes of the control tract. CONCLUSION: Reduced thalamic ADC(tCr) correlates with thalamo-cortical tract damage in MS, showing that pathologic changes in thalamic energy metabolism are associated with structural degeneration of connected fibers.


Multiple Sclerosis , Anisotropy , Diffusion Magnetic Resonance Imaging , Humans , Magnetic Resonance Spectroscopy , Multiple Sclerosis/diagnostic imaging , Thalamus/diagnostic imaging
13.
NMR Biomed ; 34(4): e4480, 2021 04.
Article En | MEDLINE | ID: mdl-33480101

Inflammation of brain tissue is a complex response of the immune system to the presence of toxic compounds or to cell injury, leading to a cascade of pathological processes that include glial cell activation. Noninvasive MRI markers of glial reactivity would be very useful for in vivo detection and monitoring of inflammation processes in the brain, as well as for evaluating the efficacy of personalized treatments. Due to their specific location in glial cells, myo-inositol (mIns) and choline compounds (tCho) seem to be the best candidates for probing glial-specific intra-cellular compartments. However, their concentrations quantified using conventional proton MRS are not specific for inflammation. In contrast, it has been recently suggested that mIns intra-cellular diffusion, measured using diffusion-weighted MRS (DW-MRS) in a mouse model of reactive astrocytes, could be a specific marker of astrocytic hypertrophy. In order to evaluate the specificity of both mIns and tCho diffusion to inflammation-driven glial alterations, we performed DW-MRS in a volume of interest containing the corpus callosum and surrounding tissue of cuprizone-fed mice after 6 weeks of intoxication, and evaluated the extent of astrocytic and microglial alterations using immunohistochemistry. Both mIns and tCho apparent diffusion coefficients were significantly elevated in cuprizone-fed mice compared with control mice, and histologic evaluation confirmed the presence of severe inflammation. Additionally, mIns and tCho diffusion showed, respectively, strong and moderate correlations with histological measures of astrocytic and microglial area fractions, confirming DW-MRS as a promising tool for specific detection of glial changes under pathological conditions.


Brain/metabolism , Cuprizone/toxicity , Inflammation/metabolism , Magnetic Resonance Spectroscopy/methods , Neuroglia/pathology , Animals , Choline/metabolism , Diffusion Magnetic Resonance Imaging , Female , Immunohistochemistry , Inositol/metabolism , Mice , Mice, Inbred C57BL
14.
NMR Biomed ; 34(5): e4206, 2021 05.
Article En | MEDLINE | ID: mdl-31930768

Diffusion-weighted (DW-) MRS investigates non-invasively microstructural properties of tissue by probing metabolite diffusion in vivo. Despite the growing interest in DW-MRS for clinical applications, little has been published on the reproducibility of this technique. In this study, we explored the optimization of a single-voxel DW-semi-LASER sequence for clinical applications at 3 T, and evaluated the reproducibility of the method under different experimental conditions. DW-MRS measurements were carried out in 10 healthy participants and repeated across three sessions. Metabolite apparent diffusion coefficients (ADCs) were calculated from mono-exponential fits (ADCexp ) up to b = 3300 s/mm2 , and from the diffusional kurtosis approach (ADCK ) up to b = 7300 s/mm2 . The inter-subject variabilities of ADCs of N-acetylaspartate + N-acetylaspartylglutamate (tNAA), creatine + phosphocreatine, choline containing compounds, and myo-inositol were calculated in the posterior cingulate cortex (PCC) and in the corona radiata (CR). We explored the effect of physiological motion on the DW-MRS signal and the importance of cardiac gating and peak thresholding to account for signal amplitude fluctuations. Additionally, we investigated the dependence of the intra-subject variability on the acquisition scheme using a bootstrapping resampling method. Coefficients of variation were lower in PCC than CR, likely due to the different sensitivities to motion artifacts of the two regions. Finally, we computed coefficients of repeatability for ADCexp and performed power calculations needed for designing clinical studies. The power calculation for ADCexp of tNAA showed that in the PCC seven subjects per group are sufficient to detect a difference of 5% between two groups with an acquisition time of 4 min, suggesting that ADCexp of tNAA is a suitable marker for disease-related intracellular alteration even in small case-control studies. In the CR, further work is needed to evaluate the voxel size and location that minimize the motion artifacts and variability of the ADC measurements.


Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Lasers , Adult , Diffusion , Dipeptides , Feasibility Studies , Female , Heart/diagnostic imaging , Humans , Male , Reproducibility of Results , Sample Size , Time Factors , Young Adult
15.
Neuroimage ; 224: 117425, 2021 01 01.
Article En | MEDLINE | ID: mdl-33035669

The intra-axonal water exchange time (τi), a parameter associated with axonal permeability, could be an important biomarker for understanding and treating demyelinating pathologies such as Multiple Sclerosis. Diffusion-Weighted MRI (DW-MRI) is sensitive to changes in permeability; however, the parameter has so far remained elusive due to the lack of general biophysical models that incorporate it. Machine learning based computational models can potentially be used to estimate such parameters. Recently, for the first time, a theoretical framework using a random forest (RF) regressor suggests that this is a promising new approach for permeability estimation. In this study, we adopt such an approach and for the first time experimentally investigate it for demyelinating pathologies through direct comparison with histology. We construct a computational model using Monte Carlo simulations and an RF regressor in order to learn a mapping between features derived from DW-MRI signals and ground truth microstructure parameters. We test our model in simulations, and find strong correlations between the predicted and ground truth parameters (intra-axonal volume fraction f: R2 =0.99, τi: R2 =0.84, intrinsic diffusivity d: R2 =0.99). We then apply the model in-vivo, on a controlled cuprizone (CPZ) mouse model of demyelination, comparing the results from two cohorts of mice, CPZ (N=8) and healthy age-matched wild-type (WT, N=8). We find that the RF model estimates sensible microstructure parameters for both groups, matching values found in literature. Furthermore, we perform histology for both groups using electron microscopy (EM), measuring the thickness of the myelin sheath as a surrogate for exchange time. Histology results show that our RF model estimates are very strongly correlated with the EM measurements (ρ = 0.98 for f, ρ = 0.82 for τi). Finally, we find a statistically significant decrease in τi in all three regions of the corpus callosum (splenium/genu/body) of the CPZ cohort (<τi>=310ms/330ms/350ms) compared to the WT group (<τi>=370ms/370ms/380ms). This is in line with our expectations that τi is lower in regions where the myelin sheath is damaged, as axonal membranes become more permeable. Overall, these results demonstrate, for the first time experimentally and in vivo, that a computational model learned from simulations can reliably estimate microstructure parameters, including the axonal permeability .


Axons/pathology , Corpus Callosum/pathology , Demyelinating Diseases/diagnostic imaging , Machine Learning , White Matter/diagnostic imaging , Animals , Axons/metabolism , Axons/ultrastructure , Computer Simulation , Corpus Callosum/ultrastructure , Cuprizone/toxicity , Demyelinating Diseases/chemically induced , Demyelinating Diseases/pathology , Diffusion Magnetic Resonance Imaging , Disease Models, Animal , Image Processing, Computer-Assisted , Mice , Microscopy, Electron , Monoamine Oxidase Inhibitors/toxicity , Monte Carlo Method , Permeability , White Matter/pathology
16.
Curr Opin Neurol ; 33(4): 413-421, 2020 08.
Article En | MEDLINE | ID: mdl-32657882

PURPOSE OF REVIEW: Magnetic resonance spectroscopy (MRS) may play a key role for the management of patients with glioma. We highlighted the utility of MRS in the noninvasive diagnosis of gliomas with mutations in isocitrate dehydrogenase (IDH) genes, by providing an overview of the neurochemical alterations observed in different glioma subtypes, as well as during treatment and progression, both in vivo and ex vivo. RECENT FINDINGS: D-2-hydroxyglutarate (2HG) decrease during anticancer treatments was recently shown to be associated with altered levels of other metabolites, including lactate, glutamate and glutathione, suggesting that tumour treatment leads to a metabolic reprogramming beyond 2HG depletion. In combination with 2HG quantification, cystathionine and glycine seem to be the most promising candidates for higher specific identification of glioma subtypes and follow-up of disease progression and response to treatment. SUMMARY: The implementation of advanced MRS methods in the routine clinical practice will allow the quantification of metabolites that are not detectable with conventional methods and may enable immediate, accurate diagnosis of gliomas, which is crucial for planning optimal therapeutic strategies and follow-up examinations. The role of different metabolites as predictors of patient outcome still needs to be elucidated.


Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging , Isocitrate Dehydrogenase/genetics , Magnetic Resonance Spectroscopy/methods , Mutation , Brain Neoplasms/genetics , Glioma/genetics , Humans
17.
Med Image Comput Comput Assist Interv ; 12267: 730-739, 2020 Oct.
Article En | MEDLINE | ID: mdl-35005744

In vivo magnetic resonance spectroscopy (MRS) can provide clinically valuable metabolic information from brain tumors that can be used for prognosis and monitoring response to treatment. Unfortunately, this technique has not been widely adopted in clinical practice or even clinical trials due to the difficulty in acquiring and analyzing the data. In this work we propose a computational approach to solve one of the most critical technical challenges: the problem of quickly and accurately positioning an MRS volume of interest (a cuboid voxel) inside a tumor using MR images for guidance. The proposed automated method comprises a convolutional neural network to segment the lesion, followed by a discrete optimization to position an MRS voxel optimally within the lesion. In a retrospective comparison, the novel automated method is shown to provide improved lesion coverage compared to manual voxel placement.

18.
Magn Reson Med ; 82(4): 1259-1265, 2019 10.
Article En | MEDLINE | ID: mdl-31131476

PURPOSE: To report the technical aspects of noninvasive detection of cystathionine in human brain glioma with edited MRS, and to investigate possible further acquisition improvements for robust quantification of this metabolite. METHODS: In vivo 1 H MR spectra were acquired at 3 T in 15 participants with an isocitrate dehydrogenase-mutated glioma using a MEGA-PRESS (MEscher GArwood point resolved spectroscopy) sequence previously employed for 2-hydroxyglutarate detection (TR = 2 s, TE = 68 ms). The editing pulse was applied at 1.9 ppm for the edit-on condition and at 7.5 ppm for the edit-off condition. To evaluate the editing efficiency, spectra were acquired in 1 participant by placing the editing pulse for the edit-on condition at 1.9, 2.03, and 2.16 ppm. Cystathionine concentration was quantified using LCModel and a simulated basis set. To confirm chemical shifts and J-coupling values of cystathionine, the 1 H NMR cystathionine spectrum was measured using a high-resolution 500 MHz spectrometer. RESULTS: In 12 gliomas, cystathionine was observed in the in vivo edited MR spectra at 2.72 and 3.85 ppm and quantified. The signal intensity of the cystathionine resonance at 2.72 ppm increased 1.7 and 2.13 times when the editing pulse was moved to 2.03 and 2.16 ppm, respectively. Cystathionine was not detectable in normal brain tissue. CONCLUSION: Cystathionine can be detected in vivo by edited MRS using the same protocol as for 2-hydroxyglutarate detection. This finding may enable a more accurate, noninvasive investigation of cellular metabolism in glioma.


Brain Neoplasms , Brain/diagnostic imaging , Cystathionine/analysis , Magnetic Resonance Imaging/methods , Adult , Aged , Brain Chemistry/physiology , Brain Neoplasms/chemistry , Brain Neoplasms/diagnostic imaging , Female , Glutarates/analysis , Humans , Image Interpretation, Computer-Assisted , Male , Middle Aged , Signal Processing, Computer-Assisted
19.
Neuro Oncol ; 21(6): 765-774, 2019 06 10.
Article En | MEDLINE | ID: mdl-30726924

BACKGROUND: Codeletion of chromosome arms 1p and 19q (1p/19q codeletion) highly benefits diagnosis and prognosis in gliomas. In this study, we investigated the effect of 1p/19q codeletion on cancer cell metabolism and evaluated possible metabolic targets for tailored therapies. METHODS: We combined in vivo 1H (proton) magnetic resonance spectroscopy (MRS) measurements in human gliomas with the analysis of a series of standard amino acids by liquid chromatography-mass spectroscopy (LC-MS) in human glioma biopsies. Sixty-five subjects with low-grade glioma were included in the study: 31 underwent the MRI/MRS examination, 47 brain tumor tissue samples were analyzed with LC-MS, and 33 samples were analyzed for gene expression with quantitative PCR. Additionally, we performed metabolic tracer experiments in cell models with 1p deletion. RESULTS: We report the first in vivo detection of cystathionine by MRS in 1p/19q codeleted gliomas. Selective accumulation of cystathionine was observed in codeleted gliomas in vivo, in brain tissue samples, as well as in cells harboring heterozygous deletions for serine- and cystathionine-pathway genes located on 1p: phosphoglycerate dehydrogenase (PHGDH) and cystathionine gamma-lyase (CTH). Quantitative PCR analyses showed 40-50% lower expression of both PHGDH and CTH in 1p/19q codeleted gliomas compared with their non-codeleted counterparts. CONCLUSIONS: Our results provide strong evidence of a selective vulnerability of codeleted gliomas to serine and glutathione depletion and point to cystathionine as a possible noninvasive marker of treatment response.


Brain Neoplasms/pathology , Chromosome Deletion , Chromosomes, Human, Pair 19/genetics , Chromosomes, Human, Pair 1/genetics , Cystathionine/metabolism , Glioma/pathology , Magnetic Resonance Spectroscopy/methods , Adult , Aged , Biomarkers, Tumor/analysis , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Proliferation , Female , Follow-Up Studies , Glioma/genetics , Glioma/metabolism , Humans , Male , Middle Aged , Neoplasm Invasiveness , Phosphoglycerate Dehydrogenase/genetics , Prognosis , Prospective Studies , Survival Rate , Tumor Cells, Cultured , Young Adult
20.
Mult Scler ; 24(3): 313-321, 2018 03.
Article En | MEDLINE | ID: mdl-28394203

OBJECTIVE: We employed diffusion-weighted magnetic resonance spectroscopy (DW-MRS), which allows to measure in vivo the diffusion properties of metabolites, to explore the functional neuro-axonal damage and the ongoing energetic dysregulation in multiple sclerosis (MS). METHODS: Twenty-five patients with MS and 18 healthy controls (HC) underwent conventional magnetic resonance imaging (MRI) and DW-MRS. The apparent diffusion coefficient (ADC) of total N-acetyl-aspartate (tNAA) and creatine-phosphocreatine (tCr) were measured in the parietal normal-appearing white matter (NAWM) and in the thalamic grey matter (TGM). Multiple regressions were used to compare metabolite ADCs between groups and to explore clinical correlations. RESULTS: In patients compared with HCs, we found a reduction in ADC(tNAA) in the TGM, reflecting functional and structural neuro-axonal damage, and in ADC(tCr) in both NAWM and TGM, possibly reflecting a reduction in energy supply in neurons and glial cells. Metabolite ADCs did not correlate with tissue atrophy, lesional volume or metabolite concentrations, while in TGM metabolite ADCs correlated with clinical scores. CONCLUSION: DW-MRS showed a reduction in tCr diffusivity in the normal-appearing brain of patients with MS, which might reflect a state of ongoing energy dysregulation affecting neurons and/or glial cells. Reversing this energy dysregulation before neuro-axonal degeneration arises may become a key objective in future neuroprotective strategies.


Aspartic Acid/analogs & derivatives , Creatine/metabolism , Diffusion Magnetic Resonance Imaging/methods , Energy Metabolism , Magnetic Resonance Spectroscopy/methods , Multiple Sclerosis/metabolism , Phosphocreatine/metabolism , Thalamus/metabolism , White Matter/metabolism , Adult , Aspartic Acid/metabolism , Atrophy/pathology , Female , Humans , Male , Middle Aged , Multiple Sclerosis/diagnostic imaging , Multiple Sclerosis/pathology , Thalamus/diagnostic imaging , Thalamus/pathology , White Matter/diagnostic imaging , White Matter/pathology
...