Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gels ; 9(5)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37232947

RESUMEN

Detection of greenhouse gases is essential because harmful gases in the air diffuse rapidly over large areas in a short period of time, causing air pollution that will induce climate change with catastrophic consequences over time. Among the materials with favorable morphologies for gas detection (nanofibers, nanorods, nanosheets), large specific surfaces, high sensitivity and low production costs, we chose nanostructured porous films of In2O3 obtained by the sol-gel method, deposited on alumina transducers, with gold (Au) interdigitated electrodes (IDE) and platinum (Pt) heating circuits. Sensitive films contained 10 deposited layers, involving intermediate and final thermal treatments to stabilize the sensitive film. The fabricated sensor was characterized using AFM, SEM, EDX and XRD. The film morphology is complex, containing fibrillar formations and some quasi-spherical conglomerates. The deposited sensitive films are rough, thus favoring gas adsorption. Ozone sensing tests were performed at different temperatures. The highest response of the ozone sensor was recorded at room temperature, considered to be the working temperature for this specific sensor.

2.
J Mater Sci Mater Electron ; 33(25): 19998-20011, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38625349

RESUMEN

Recently the emissions of volatile organic compounds (VOCs) in the atmosphere have increased dramatically with rapid development of urbanization and industry. This led to a large decline in air quality around the world, which resulted in a heavy impact on human health. Therefore, new/cheap detection devices for VOCs are of high interest. Formaldehyde (FA) is a very toxic VOC, which damages the respiratory system even in the smallest doses and short exposure time. Zinc oxide (ZnO)/nickel oxide (NiO) heterostructures were synthesized using an economical route: firstly, NiO was prepared by liquid exfoliation technique and deposited by dip-coating on alumina ceramic transducers with two interdigital gold (Au) electrodes, followed by low-temperature hydrothermal growth of ZnO. The as-prepared sensors were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM-EDAX), and X-Ray fluorescence (XRF). The response/recovery of ZnO/NiO heterostructure-based microsensors for formaldehyde was investigated at room temperature, in agreement with modern sensing requirements. The sensor operating voltage was varied between 1.5 and 5.0 V direct current (DC), to achieve the best sensor performance.

3.
Sensors (Basel) ; 21(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807640

RESUMEN

Developing a sensing layer with high electroactive properties is an important aspect for proper functionality of a wearable sensor. The polymeric nanocomposite material obtained by a simple electropolymerization on gold interdigitated electrodes (IDEs) can be optimized to have suitable conductive properties to be used with direct current (DC) measurements. A new layer based on polyaniline:poly(4-styrenesulfonate) (PANI:PSS)/single-walled carbon nanotubes (SWCNT)/ferrocene (Fc) was electrosynthesized and deposed on interdigital transducers (IDT) and was characterized in detail using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), scanning electron microscopy (SEM), Raman spectroscopy, X-ray photoemission spectroscopy (XPS), and X-ray diffraction (XRD). The sensor characteristics of the material towards carbon monoxide (CO) in the concentration range of 10-300 ppm were examined, showing a minimal relative humidity interference of only 1% and an increase of sensitivity with the increase of CO concentration. Humidity interference could be controlled by the number of CV cycles when a compact layer was formed and the addition of Fc played an important role in the decrease of humidity. The results for CO detection can be substantially improved by optimizing the number of deposition cycles and enhancing the Fc concentration. The material was developed for selective detection of CO in real environmental conditions and shows good potential for use in a wearable sensor.


Asunto(s)
Nanotubos de Carbono , Dispositivos Electrónicos Vestibles , Electrodos , Oro , Metalocenos
4.
Talanta ; 210: 120643, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31987187

RESUMEN

Two new biomimetic sensors for the detection of adiponectin (A) and leptin (L) through molecularly imprinted polymers (MIPs) onto gold working electrodes (GWEs) were fabricated. Based on electrochemical impedance spectroscopy (EIS) results and cyclic voltammetry (CV) characteristics recorded in the development stages of the fabricated sensors, the sensors were electrochemically optimized and used in an integrated microfluidic platform to detect adiponectin/leptin via conductance signals and non-imprinted electrodes were used as references. To overcome the limitation of the low response signals after template binding non-conductive polyphenol (PP) and poliscopoletin (PS) were used for templates formation. Under optimized experimental conditions the conductance and resistance signals were obtained in the linear range of 0-50 µg ml-1 for A and 1-32 ng∙ml-1 for L with low limits of detection (0.25 µg ml-1 for A and 0.110 ng ml-1 for L). The dedicated platform exhibited an excellent response with great selectivity and stability. Finally, the proposed biomimetic sensors were successfully applied to enable the determination of A and L in human patient's serum with very high accuracy when compared to enzyme-linked immunosorbent assay ELISA reference methods.


Asunto(s)
Adiponectina/sangre , Materiales Biocompatibles/química , Técnicas Biosensibles , Técnicas Electroquímicas , Leptina/sangre , Técnicas Biosensibles/instrumentación , Impedancia Eléctrica , Técnicas Electroquímicas/instrumentación , Humanos
5.
Beilstein J Nanotechnol ; 7: 2045-2056, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28144552

RESUMEN

A series of SnO2-ZnO composite nanostructured (thin) films with different amounts of SnO2 (from 0 to 50 wt %) was prepared and deposited on a miniaturized porous alumina transducer using the sol-gel and dip coating method. The transducer, developed by our research group, contains Au interdigital electrodes on one side and a Pt heater on the other side. The sensing films were characterized using SEM and AFM techniques. Highly toxic and flammable gases (CO, CO2, CH4, and C3H8) were tested under lab conditions (carrier gas was dry air) using a special gas sensing cell developed by our research group. The gas concentrations varied between 5 and 2000 ppm and the optimum working temperatures were in the range of 210-300 °C. It was found that the sensing performance was influenced by the amount of oxide components present in the composite material. Improved sensing performance was achieved for the ZnO (98 wt %)-SnO2 (2 wt %) composite as compared to the sensors containing only the pristine oxides. The sensor response, cross-response and recovery characteristics of the analyzed materials are reported. The high sensitivity (RS = 1.21) to low amounts of CO (5 ppm) was reported for the sensor containing a composite sensitive film with ZnO (98 wt %)-SnO2 (2 wt %). This sensor response to CO was five times higher as compared to its response to CO2, CH4, and C3H8, thus the sensor is considered to be selective for CO under these test conditions.

6.
Sensors (Basel) ; 12(8): 11372-90, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23112661

RESUMEN

The following paper describes the design and functions of a miniaturized integrated platform for optical and electrical monitoring of cell cultures and the necessary steps in the fabrication and testing of a silicon microchip Micro ElectroMechanical Systems (MEMS)-based technology for cell data recording, monitoring and stimulation. The silicon microchip consists of a MEMS machined device containing a shank of 240 µm width, 3 mm long and 50 µm thick and an enlarged area of 5 mm × 5 mm hosting the pads for electrical connections. Ten platinum electrodes and five sensors are placed on the shank and are connected with the external electronics through the pads. The sensors aim to monitor the pH, the temperature and the impedance of the cell culture. The electrodes are bidirectional and can be used both for electrical potential recording and stimulation of cells. The fabrication steps are presented, along with the electrical and optical characterization of the system. The target of the research is to develop a new and reconfigurable platform according to the particular applications needs, as a tool for the biologist, chemists and medical doctors working is the field of cell culture monitoring in terms of growth, maintenance conditions, reaction to electrical or chemical stimulation (drugs, toxicants, etc.). HaCaT (Immortalised Human Keratinocyte) cell culture has been used for demonstration purposes in order to provide information on the platform electrical and optical functions.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Sistemas Microelectromecánicos/instrumentación , Imagen Óptica/instrumentación , Compuestos de Anilina/química , Técnicas de Cultivo de Célula/métodos , Línea Celular Tumoral , Conductividad Eléctrica , Diseño de Equipo , Humanos , Concentración de Iones de Hidrógeno , Sistemas Microelectromecánicos/métodos , Microelectrodos , Nanofibras , Imagen Óptica/métodos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...