Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gene ; 684: 118-123, 2019 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-30366082

RESUMEN

MOTIVATION: While large-scale whole genome sequencing is feasible the high costs compel investigators to focus on disease subjects. As a result large sequencing datasets of samples with different diseases are often readily available, but not healthy controls to contrast them with. While it is possible to perform an association study using only diseases, the associations could be driven by a disease acting as a control and not the focal disease. METHODS: We developed a genotype-on-phenotype reverse regression with a Bayesian spike and slab prior to enable association testing in datasets with multiple diseases. This method, referred to as revreg, flagged associations (both common and rare) that were driven by diseases that were not of primary interest. RESULTS: Based on simulations, revreg had 80% power to detect an odds ratio of 1.74 for common variants (3500 samples total) and 3.73 for rare variants (14,000 samples total), with minimal type I error. For common variants, we tested this method on 3657 whole genome sequenced samples aimed at discovering variants associated with disease risk of Chronic Obstructive Pulmonary Disease using three other diseases as controls. We demonstrated detection of six highly significant associations likely due to Age-Related Macular Degeneration. In an exome dataset of 8836 samples aimed at characterizing rare variants associated with disease risk of Asthma, using five other diseases as controls, we detected and removed genic regions due to AMD (C3, CFH, CFHR5, CFI, and DNMT3A) and RA (KRTAP13-4).


Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Análisis de Secuencia de ADN/métodos , Secuenciación Completa del Genoma/métodos , Asma/genética , Teorema de Bayes , Estudios de Casos y Controles , Simulación por Computador , Predisposición Genética a la Enfermedad , Humanos , Degeneración Macular/genética , Fenotipo
2.
Cell Rep ; 12(3): 495-510, 2015 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-26166562

RESUMEN

Understanding the regulation of islet cell mass has important implications for the discovery of regenerative therapies for diabetes. The liver plays a central role in metabolism and the regulation of endocrine cell number, but liver-derived factors that regulate α-cell and ß-cell mass remain unidentified. We propose a nutrient-sensing circuit between liver and pancreas in which glucagon-dependent control of hepatic amino acid metabolism regulates α-cell mass. We found that glucagon receptor inhibition reduced hepatic amino acid catabolism, increased serum amino acids, and induced α-cell proliferation in an mTOR-dependent manner. In addition, mTOR inhibition blocked amino-acid-dependent α-cell replication ex vivo and enabled conversion of α-cells into ß-like cells in vivo. Serum amino acids and α-cell proliferation were increased in neonatal mice but fell throughout postnatal development in a glucagon-dependent manner. These data reveal that amino acids act as sensors of glucagon signaling and can function as growth factors that increase α-cell proliferation.


Asunto(s)
Aminoácidos/metabolismo , Glucagón/metabolismo , Hígado/citología , Hígado/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Proliferación Celular , Metabolismo , Ratones , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...