Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Phys Rev Lett ; 129(11): 112501, 2022 Sep 09.
Article En | MEDLINE | ID: mdl-36154392

The reduced transition probabilities for the 4_{1}^{+}→2_{1}^{+} and 2_{1}^{+}→0_{1}^{+} transitions in ^{92}Mo and ^{94}Ru and for the 4_{1}^{+}→2_{1}^{+} and 6_{1}^{+}→4_{1}^{+} transitions in ^{90}Zr have been determined in this experiment making use of a multinucleon transfer reaction. These results have been interpreted on the basis of realistic shell-model calculations in the f_{5/2}, p_{3/2}, p_{1/2}, and g_{9/2} proton valence space. Only the combination of extensive lifetime information and large scale shell-model calculations allowed the extent of the seniority conservation in the N=50 g_{9/2} orbital to be understood. The conclusion is that seniority is largely conserved in the first πg_{9/2} orbital.

3.
Phys Rev E ; 102(6-1): 062418, 2020 Dec.
Article En | MEDLINE | ID: mdl-33466039

The stopping power of liquid water was measured for carbon ions with energies in the Bragg peak region using the inverted Doppler shift attenuation method. Among the semiempirical data, the results of this work agree best with the data recommended in the Errata and Addendum of ICRU Report No. 73, which is based on an I value of 78 eV for water. The agreement was worse when the present results were compared to the newer recommendation of the ICRU published in ICRU Report No. 90. The srim code seems to slightly overestimate the stopping power of water for carbon ions above 3 MeV. A semiexperimental stopping power of water for α particles was derived from the present results using the theoretical ratio between the stopping powers of water for carbon ions and α particles computed by means of the casp code. These values agree well with the experimental data for α particles within the uncertainties.

4.
Phys Rev Lett ; 121(19): 192501, 2018 Nov 09.
Article En | MEDLINE | ID: mdl-30468600

The lifetimes of the first excited 2^{+}, 4^{+}, and 6^{+} states in ^{98}Zr were measured with the recoil-distance Doppler shift method in an experiment performed at GANIL. Excited states in ^{98}Zr were populated using the fission reaction between a 6.2 MeV/u ^{238}U beam and a ^{9}Be target. The γ rays were detected with the EXOGAM array in correlation with the fission fragments identified by mass and atomic number in the VAMOS++ spectrometer. Our result shows a very small B(E2;2_{1}^{+}→0_{1}^{+}) value in ^{98}Zr, thereby confirming the very sudden onset of collectivity at N=60. The experimental results are compared to large-scale Monte Carlo shell model and beyond-mean-field calculations. The present results indicate the coexistence of two additional deformed shapes in this nucleus along with the spherical ground state.

5.
Phys Rev Lett ; 121(2): 022502, 2018 Jul 13.
Article En | MEDLINE | ID: mdl-30085703

Lifetimes of the first excited 2^{+} and 4^{+} states in the extremely neutron-deficient nuclide ^{172}Pt have been measured for the first time using the recoil-distance Doppler shift and recoil-decay tagging techniques. An unusually low value of the ratio B(E2:4_{1}^{+}→2_{1}^{+})/B(E2:2_{1}^{+}→0_{gs}^{+})=0.55(19) was found, similar to a handful of other such anomalous cases observed in the entire Segré chart. The observation adds to a cluster of a few extremely neutron-deficient nuclides of the heavy transition metals with neutron numbers N≈90-94 featuring the effect. No theoretical model calculations reported to date have been able to explain the anomalously low B(E2:4_{1}^{+}→2_{1}^{+})/B(E2:2_{1}^{+}→0_{gs}^{+}) ratios observed in these cases. Such low values cannot, e.g., be explained within the framework of the geometrical collective model or by algebraic approaches within the interacting boson model framework. It is proposed that the group of B(E2:4_{1}^{+}→2_{1}^{+})/B(E2:2_{1}^{+}→0_{gs}^{+}) ratios in the extremely neutron-deficient even-even W, Os, and Pt nuclei around neutron numbers N≈90-94 reveal a quantum phase transition from a seniority-conserving structure to a collective regime as a function of neutron number. Although a system governed by seniority symmetry is the only theoretical framework for which such an effect may naturally occur, the phenomenon is highly unexpected for these nuclei that are not situated near closed shells.

6.
Phys Rev Lett ; 116(12): 122502, 2016 Mar 25.
Article En | MEDLINE | ID: mdl-27058074

The lifetimes of the first excited 2^{+} and 4^{+} states in ^{72}Ni were measured at the National Superconducting Cyclotron Laboratory with the recoil-distance Doppler-shift method, a model-independent probe to obtain the reduced transition probability. Excited states in ^{72}Ni were populated by the one-proton knockout reaction of an intermediate energy ^{73}Cu beam. γ-ray-recoil coincidences were detected with the γ-ray tracking array GRETINA and the S800 spectrograph. Our results provide evidence of enhanced transition probability B(E2;2^{+}→0^{+}) as compared to ^{68}Ni, but do not confirm the trend of large B(E2) values reported in the neighboring isotope ^{70}Ni obtained from Coulomb excitation measurement. The results are compared to shell model calculations. The lifetime obtained for the excited 4_{1}^{+} state is consistent with models showing decay of a seniority ν=4, 4^{+} state, which is consistent with the disappearance of the 8^{+} isomer in ^{72}Ni.

7.
Phys Rev Lett ; 112(14): 142502, 2014 Apr 11.
Article En | MEDLINE | ID: mdl-24765947

The transition rates from the yrast 2+ and 4+ states in the self-conjugate 72Kr nucleus were studied via lifetime measurements employing the GRETINA array with a novel application of the recoil-distance method. The large collectivity observed for the 4+→2+ transition suggests a prolate character of the excited states. The reduced collectivity previously reported for the 2+→0+ transition was confirmed. The irregular behavior of collectivity points to the occurrence of a rapid oblate-prolate shape transition in 72Kr, providing stringent tests for advanced theories to describe the shape coexistence and its evolution.

...