Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Cancer Discov ; 13(9): 1998-2011, 2023 09 06.
Article En | MEDLINE | ID: mdl-37377403

Several fibroblast growth factor receptor (FGFR) inhibitors are approved or in clinical development for the treatment of FGFR-driven urothelial cancer, and molecular mechanisms of resistance leading to patient relapses have not been fully explored. We identified 21 patients with FGFR-driven urothelial cancer treated with selective FGFR inhibitors and analyzed postprogression tissue and/or circulating tumor DNA (ctDNA). We detected single mutations in the FGFR tyrosine kinase domain in seven (33%) patients (FGFR3 N540K, V553L/M, V555L/M, E587Q; FGFR2 L551F) and multiple mutations in one (5%) case (FGFR3 N540K, V555L, and L608V). Using Ba/F3 cells, we defined their spectrum of resistance/sensitivity to multiple selective FGFR inhibitors. Eleven (52%) patients harbored alterations in the PI3K-mTOR pathway (n = 4 TSC1/2, n = 4 PIK3CA, n = 1 TSC1 and PIK3CA, n = 1 NF2, n = 1 PTEN). In patient-derived models, erdafitinib was synergistic with pictilisib in the presence of PIK3CA E545K, whereas erdafitinib-gefitinib combination was able to overcome bypass resistance mediated by EGFR activation. SIGNIFICANCE: In the largest study on the topic thus far, we detected a high frequency of FGFR kinase domain mutations responsible for resistance to FGFR inhibitors in urothelial cancer. Off-target resistance mechanisms involved primarily the PI3K-mTOR pathway. Our findings provide preclinical evidence sustaining combinatorial treatment strategies to overcome bypass resistance. See related commentary by Tripathi et al., p. 1964. This article is featured in Selected Articles from This Issue, p. 1949.


Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Humans , Neoplasm Recurrence, Local/drug therapy , Urinary Bladder Neoplasms/drug therapy , Carcinoma, Transitional Cell/drug therapy , Protein Kinase Inhibitors/therapeutic use , TOR Serine-Threonine Kinases , Class I Phosphatidylinositol 3-Kinases , Phosphatidylinositol 3-Kinases
2.
Clin Cancer Res ; 26(1): 242-255, 2020 01 01.
Article En | MEDLINE | ID: mdl-31585938

PURPOSE: Lorlatinib is a third-generation anaplastic lymphoma kinase (ALK) tyrosine kinase inhibitor with proven efficacy in patients with ALK-rearranged lung cancer previously treated with first- and second-generation ALK inhibitors. Beside compound mutations in the ALK kinase domain, other resistance mechanisms driving lorlatinib resistance remain unknown. We aimed to characterize the mechanisms of resistance to lorlatinib occurring in patients with ALK-rearranged lung cancer and design new therapeutic strategies in this setting. EXPERIMENTAL DESIGN: Resistance mechanisms were investigated in 5 patients resistant to lorlatinib. Longitudinal tumor biopsies were studied using high-throughput next-generation sequencing. Patient-derived models were developed to characterize the acquired resistance mechanisms, and Ba/F3 cell mutants were generated to study the effect of novel ALK compound mutations. Drug combinatory strategies were evaluated in vitro and in vivo to overcome lorlatinib resistance. RESULTS: Diverse biological mechanisms leading to lorlatinib resistance were identified. Epithelial-mesenchymal transition (EMT) mediated resistance in two patient-derived cell lines and was susceptible to dual SRC and ALK inhibition. We characterized three ALK kinase domain compound mutations occurring in patients, L1196M/D1203N, F1174L/G1202R, and C1156Y/G1269A, with differential susceptibility to ALK inhibition by lorlatinib. We identified a novel bypass mechanism of resistance caused by NF2 loss-of-function mutations, conferring sensitivity to treatment with mTOR inhibitors. CONCLUSIONS: This study shows that mechanisms of resistance to lorlatinib are diverse and complex, requiring new therapeutic strategies to tailor treatment upon disease progression.


Anaplastic Lymphoma Kinase/antagonists & inhibitors , Anaplastic Lymphoma Kinase/genetics , Lactams, Macrocyclic/pharmacology , Lung Neoplasms/drug therapy , Adult , Aminopyridines , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Female , Gene Rearrangement , Humans , Lactams , Lactams, Macrocyclic/therapeutic use , Longitudinal Studies , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , Mutation , Neurofibromin 2/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyrazoles , Xenograft Model Antitumor Assays
3.
Proc Natl Acad Sci U S A ; 113(45): 12721-12726, 2016 Nov 08.
Article En | MEDLINE | ID: mdl-27791144

The positive transcription elongation factor (P-TEFb) is required for the transcription of most genes by RNA polymerase II. Hexim proteins associated with 7SK RNA bind to P-TEFb and reversibly inhibit its activity. P-TEFb comprises the Cdk9 cyclin-dependent kinase and a cyclin T. Hexim proteins have been shown to bind the cyclin T subunit of P-TEFb. How this binding leads to inhibition of the kinase activity of Cdk9 has remained elusive, however. Using a photoreactive amino acid incorporated into proteins, we show that in live cells, cell extracts, and in vitro reconstituted complexes, Hexim1 cross-links and thus contacts Cdk9. Notably, replacement of a phenylalanine, F208, belonging to an evolutionary conserved Hexim1 peptide (202PYNTTQFLM210) known as the "PYNT" sequence, cross-links a peptide within the activation segment that controls access to the Cdk9 catalytic cleft. Reciprocally, Hexim1 is cross-linked by a photoreactive amino acid replacing Cdk9 W193, a tryptophan within this activation segment. These findings provide evidence of a direct interaction between Cdk9 and its inhibitor, Hexim1. Based on similarities with Cdk2 3D structure, the Cdk9 peptide cross-linked by Hexim1 corresponds to the substrate binding-site. Accordingly, the Hexim1 PYNT sequence is proposed to interfere with substrate binding to Cdk9 and thereby to inhibit its kinase activity.

4.
Cell Rep ; 8(1): 75-83, 2014 Jul 10.
Article En | MEDLINE | ID: mdl-24981864

Transcription is a stochastic process occurring mostly in episodic bursts. Although the local chromatin environment is known to influence the bursting behavior on long timescales, the impact of transcription factors (TFs)--especially in rapidly inducible systems--is largely unknown. Using fluorescence in situ hybridization and computational models, we quantified the transcriptional activity of the proto-oncogene c-Fos with single mRNA accuracy at individual endogenous alleles. We showed that, during MAPK induction, the TF concentration modulates the burst frequency of c-Fos, whereas other bursting parameters remain mostly unchanged. By using synthetic TFs with TALE DNA-binding domains, we systematically altered different aspects of these bursts. Specifically, we linked the polymerase initiation frequency to the strength of the transactivation domain and the burst duration to the TF lifetime on the promoter. Our results show how TFs and promoter binding domains collectively act to regulate different bursting parameters, offering a vast, evolutionarily tunable regulatory range for individual genes.


Models, Genetic , Proto-Oncogene Proteins c-fos/genetics , Transcription Factors/metabolism , Transcriptional Activation , Alleles , Cell Line, Tumor , Cells, Cultured , DNA-Directed RNA Polymerases/metabolism , Humans , Protein Structure, Tertiary , Proto-Oncogene Mas , Proto-Oncogene Proteins c-fos/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Stochastic Processes , Transcription Factors/chemistry , Transcription Factors/genetics
...