Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 130(2): 699-714, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31845908

RESUMEN

HSP27 is highly expressed in, and supports oncogene addiction of, many cancers. HSP27 phosphorylation is a limiting step for activation of this protein and a target for inhibition, but its highly disordered structure challenges rational structure-guided drug discovery. We performed multistep biochemical, structural, and computational experiments to define a spherical 24-monomer complex composed of 12 HSP27 dimers with a phosphorylation pocket flanked by serine residues between their N-terminal domains. Ivermectin directly binds this pocket to inhibit MAPKAP2-mediated HSP27 phosphorylation and depolymerization, thereby blocking HSP27-regulated survival signaling and client-oncoprotein interactions. Ivermectin potentiated activity of anti-androgen receptor and anti-EGFR drugs in prostate and EGFR/HER2-driven tumor models, respectively, identifying a repurposing approach for cotargeting stress-adaptive responses to overcome resistance to inhibitors of oncogenic pathway signaling.


Asunto(s)
Proteínas de Choque Térmico , Ivermectina , Chaperonas Moleculares , Neoplasias Experimentales , Receptor ErbB-2 , Células A549 , Animales , Proteínas de Choque Térmico/antagonistas & inhibidores , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ivermectina/química , Ivermectina/farmacología , Ratones , Chaperonas Moleculares/antagonistas & inhibidores , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Dominios Proteicos , Multimerización de Proteína , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo
2.
ACS Chem Biol ; 14(8): 1751-1759, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31241898

RESUMEN

De novo macrocyclic peptides, derived using selection technologies such as phage and mRNA display, present unique and unexpected solutions to challenging biological problems. This is due in part to their unusual folds, which are able to present side chains in ways not available to canonical structures such as α-helices and ß-sheets. Despite much recent interest in these molecules, their folding and binding behavior remains poorly characterized. In this work, we present cocrystallization, docking, and solution NMR structures of three de novo macrocyclic peptides that all bind as competitive inhibitors with single-digit nanomolar Ki to the active site of human pancreatic α-amylase. We show that a short stably folded motif in one of these is nucleated by internal hydrophobic interactions in an otherwise dynamic conformation in solution. Comparison of the solution structures with a target-bound structure from docking indicates that stabilization of the bound conformation is provided through interactions with the target protein after binding. These three structures also reveal a surprising functional convergence to present a motif of a single arginine sandwiched between two aromatic residues in the interactions of the peptide with the key catalytic residues of the enzyme, despite little to no other structural homology. Our results suggest that intramolecular hydrophobic interactions are important for priming binding of small macrocyclic peptides to their target and that high rigidity is not necessary for high affinity.


Asunto(s)
Inhibidores Enzimáticos/metabolismo , alfa-Amilasas Pancreáticas/antagonistas & inhibidores , alfa-Amilasas Pancreáticas/metabolismo , Péptidos Cíclicos/metabolismo , Dominio Catalítico , Cristalización , Humanos , Simulación del Acoplamiento Molecular , alfa-Amilasas Pancreáticas/química , Unión Proteica , Conformación Proteica , Pliegue de Proteína
3.
Chem Sci ; 10(48): 11073-11077, 2019 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-32206255

RESUMEN

Simplified analogues of the potent human amylase inhibitor montbretin A were synthesised and shown to bind tightly, K I = 60 and 70 nM, with improved specificity over medically relevant glycosidases, making them promising candidates for controlling blood glucose. Crystallographic analysis confirmed similar binding modes and identified new active site interactions.

4.
Cell Chem Biol ; 24(3): 381-390, 2017 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-28262556

RESUMEN

Human pancreatic α-amylase (HPA) is responsible for degrading starch to malto-oligosaccharides, thence to glucose, and is therefore an attractive therapeutic target for the treatment of diabetes and obesity. Here we report the discovery of a unique lariat nonapeptide, by means of the RaPID (Random non-standard Peptides Integrated Discovery) system, composed of five amino acids in a head-to-side-chain thioether macrocycle and a further four amino acids in a 310 helical C terminus. This is a potent inhibitor of HPA (Ki = 7 nM) yet exhibits selectivity for the target over other glycosidases tested. Structural studies show that this nonapeptide forms a compact tertiary structure, and illustrate that a general inhibitory motif involving two phenolic groups is often accessed for tight binding of inhibitors to HPA. Furthermore, the work reported here demonstrates the potential of this methodology for the discovery of de novo peptide inhibitors against other glycosidases.


Asunto(s)
Inhibidores Enzimáticos/metabolismo , alfa-Amilasas Pancreáticas/metabolismo , Péptidos/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Humanos , Concentración 50 Inhibidora , Cinética , Conformación Molecular , Simulación de Dinámica Molecular , alfa-Amilasas Pancreáticas/antagonistas & inhibidores , Biblioteca de Péptidos , Péptidos/química , Procesamiento Proteico-Postraduccional , ARN de Transferencia/química , ARN de Transferencia/metabolismo
5.
Biochem J ; 474(5): 851-864, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-28049758

RESUMEN

Cathepsin K (CatK) is the predominant mammalian bone-degrading protease and thus an ideal target for antiosteoporotic drug development. Rodent models of osteoporosis are preferred due to their close reflection of the human disease and their ease of handling, genetic manipulation and economic affordability. However, large differences in the potency of CatK inhibitors for the mouse/rat vs. the human protease orthologs have made it impossible to use rodent models. This is even more of a problem considering that the most advanced CatK inhibitors, including odanacatib (ODN) and balicatib, failed in human clinical trials due to side effects and rodent models are not available to investigate the mechanism of these failures. Here, we elucidated the structural elements of the potency differences between mouse and human CatK (hCatK) using ODN. We determined and compared the structures of inhibitor-free mouse CatK (mCatK), hCatK and ODN bound to hCatK. Two structural differences were identified and investigated by mutational analysis. Humanizing subsite 2 in mCatK led to a 5-fold improvement of ODN binding, whereas the replacement of Tyr61 in mCatK with Asp resulted in an hCatK with comparable ODN potency. Combining both sites further improved the inhibition of the mCatK variant. Similar results were obtained for balicatib. These findings will allow the generation of transgenic CatK mice that will facilitate the evaluation of CatK inhibitor adverse effects and to explore routes to avoid them.


Asunto(s)
Benzamidas/química , Compuestos de Bifenilo/química , Conservadores de la Densidad Ósea/química , Catepsina K/antagonistas & inhibidores , Piperazinas/química , Inhibidores de Proteasas/química , Secuencia de Aminoácidos , Animales , Benzamidas/metabolismo , Sitios de Unión , Compuestos de Bifenilo/metabolismo , Conservadores de la Densidad Ósea/metabolismo , Catepsina K/química , Catepsina K/genética , Catepsina K/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Cinética , Ligandos , Ratones , Mutagénesis Sitio-Dirigida , Piperazinas/metabolismo , Inhibidores de Proteasas/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología Estructural de Proteína
6.
Biochemistry ; 55(43): 6000-6009, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27756128

RESUMEN

Starch provides the major source of caloric intake in many diets. Cleavage of starch into malto-oligosaccharides in the gut is catalyzed by pancreatic α-amylase. These oligosaccharides are then further cleaved by gut wall α-glucosidases to release glucose, which is absorbed into the bloodstream. Potential surface binding sites for starch on the pancreatic amylase, distinct from the active site of the amylase, have been identified through X-ray crystallographic analyses. The role of these sites in the degradation of both starch granules and soluble starch was probed by the generation of a series of surface variants modified at each site to disrupt binding. Kinetic analysis of the binding and/or cleavage of substrates ranging from simple maltotriosides to soluble starch and insoluble starch granules has allowed evaluation of the potential role of each such surface site. In this way, two key surface binding sites, on the same face as the active site, are identified. One site, containing a pair of aromatic residues, is responsible for attachment to starch granules, while a second site featuring a tryptophan residue around which a malto-oligosaccharide wraps is shown to heavily influence soluble starch binding and hydrolysis. These studies provide insights into the mechanisms by which enzymes tackle the degradation of largely insoluble polymers and also present some new approaches to the interrogation of the binding sites involved.


Asunto(s)
Páncreas/enzimología , Almidón/metabolismo , alfa-Amilasas/metabolismo , Sitios de Unión , Humanos , Cinética , Mutagénesis Sitio-Dirigida , alfa-Amilasas/genética
7.
J Nat Prod ; 79(8): 1962-70, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27498895

RESUMEN

Natural products are an important source of novel drug scaffolds. The highly variable and unpredictable timelines associated with isolating novel compounds and elucidating their structures have led to the demise of exploring natural product extract libraries in drug discovery programs. Here we introduce affinity crystallography as a new methodology that significantly shortens the time of the hit to active structure cycle in bioactive natural product discovery research. This affinity crystallography approach is illustrated by using semipure fractions of an actinomycetes culture extract to isolate and identify a cathepsin K inhibitor and to compare the outcome with the traditional assay-guided purification/structural analysis approach. The traditional approach resulted in the identification of the known inhibitor antipain (1) and its new but lower potency dehydration product 2, while the affinity crystallography approach led to the identification of a new high-affinity inhibitor named lichostatinal (3). The structure and potency of lichostatinal (3) was verified by total synthesis and kinetic characterization. To the best of our knowledge, this is the first example of isolating and characterizing a potent enzyme inhibitor from a partially purified crude natural product extract using a protein crystallographic approach.


Asunto(s)
Productos Biológicos/farmacología , Catepsina K/antagonistas & inhibidores , Líquenes/química , Péptidos/aislamiento & purificación , Péptidos/farmacología , Antipaína/química , Antipaína/farmacología , Productos Biológicos/síntesis química , Productos Biológicos/química , Colombia Británica , Cristalografía por Rayos X , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Péptidos/química
8.
ACS Cent Sci ; 2(3): 154-161, 2016 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-27066537

RESUMEN

Selective inhibitors of human pancreatic α-amylase (HPA) are an effective means of controlling blood sugar levels in the management of diabetes. A high-throughput screen of marine natural product extracts led to the identification of a potent (Ki = 10 pM) peptidic HPA inhibitor, helianthamide, from the Caribbean sea anemone Stichodactyla helianthus. Active helianthamide was produced in Escherichia coli via secretion as a barnase fusion protein. X-ray crystallographic analysis of the complex of helianthamide with porcine pancreatic α-amylase revealed that helianthamide adopts a ß-defensin fold and binds into and across the amylase active site, utilizing a contiguous YIYH inhibitory motif. Helianthamide represents the first of a novel class of glycosidase inhibitors and provides an unusual example of functional malleability of the ß-defensin fold, which is rarely seen outside of its traditional role in antimicrobial peptides.

9.
FEBS Lett ; 590(8): 1143-51, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27000970

RESUMEN

As part of a search for selective, mechanism-based covalent inhibitors of human pancreatic α-amylase we describe the chemoenzymatic synthesis of the disaccharide analog α-glucosyl epi-cyclophellitol, demonstrate its stoichiometric reaction with human pancreatic α-amylase and evaluate the time dependence of its inhibition. X-ray crystallographic analysis of the covalent derivative so formed confirms its reaction at the active site with formation of a covalent bond to the catalytic nucleophile D197. The structure illuminates the interactions with the active site and confirms OH4' on the nonreducing end sugar as a good site for attachment of fluorescent tags in generating probes for localization and quantitation of amylase in vivo.


Asunto(s)
Ciclohexanoles/farmacología , Disacáridos/farmacología , Compuestos Epoxi/farmacología , alfa-Amilasas Pancreáticas/química , alfa-Amilasas Pancreáticas/metabolismo , Dominio Catalítico , Simulación por Computador , Humanos , Enlace de Hidrógeno , Inositol/análogos & derivados , Inositol/química , Inositol/metabolismo , Cinética , Espectrometría de Masas , Modelos Moleculares , Agua , Difracción de Rayos X
10.
Mol Cell Biochem ; 411(1-2): 373-81, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26547551

RESUMEN

Diabetes is an increasingly prevalent disease state with a global impact. It is important that effective and cost-efficient methods be developed to treat this disease state. Zucker diabetic fatty rats, an animal model of type 2 diabetes, were treated with montbretin A (MbA), a selective human pancreatic α-amylase inhibitor, isolated from the corms of the Crocosmia crocosmiiflora plant that may have potential as a glucose-lowering agent. The study purpose was to determine if MbA was an orally effective treatment for diabetes. The effect of MbA was compared to a current clinical treatment modality, acarbose that is associated with gastrointestinal side effects known to affect patient compliance. MbA and acarbose were administered daily in the drinking water. Body weight and fluid intake were measured daily to calculate dose consumption. Plasma glucose levels were determined twice weekly in both the fed and fasted state. At termination samples were collected to assess increased risk of secondary complications related to diabetes and oxidative stress. There was no effect of either MbA or acarbose treatment on insulin levels. Plasma glucose levels were significantly lower following MbA treatment in the ZT group which persisted throughout the study period (day 49: 12.1 ± 1.2 mM). However, while there was an initial decrease in plasma glucose levels in the acarbose-treated fatty group, this effect was not sustained (day 49: 20.6 ± 1.3 mM) through to termination. MbA improved the oxidative status of the fatty diabetic animals as well as attenuated markers for increased risk of cardiovascular complications associated with diabetes. This study demonstrated that, at a lower dose as compared to acarbose (10 mg/kg/day), chronic oral administration of MbA (7.5 mg/kg/day) was an effective glucose-lowering agent in the treatment of type 2 diabetes.


Asunto(s)
Glucemia/metabolismo , Flavonas/farmacología , Hipoglucemiantes/farmacología , Trisacáridos/farmacología , Alanina Transaminasa/sangre , Animales , Aspartato Aminotransferasas/sangre , Masculino , Ratas , Ratas Zucker
11.
Nat Chem Biol ; 11(9): 691-6, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26214255

RESUMEN

The complex plant flavonol glycoside montbretin A is a potent (Ki = 8 nM) and specific inhibitor of human pancreatic α-amylase with potential as a therapeutic for diabetes and obesity. Controlled degradation studies on montbretin A, coupled with inhibition analyses, identified an essential high-affinity core structure comprising the myricetin and caffeic acid moieties linked via a disaccharide. X-ray structural analyses of the montbretin A-human α-amylase complex confirmed the importance of this core structure and revealed a novel mode of glycosidase inhibition wherein internal π-stacking interactions between the myricetin and caffeic acid organize their ring hydroxyls for optimal hydrogen bonding to the α-amylase catalytic residues D197 and E233. This novel inhibitory motif can be reproduced in a greatly simplified analog, offering potential for new strategies for glycosidase inhibition and therapeutic development.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/química , Flavonoles/química , Glicósidos/química , alfa-Amilasas/química , Sitios de Unión , Ácidos Cafeicos/química , Secuencia de Carbohidratos , Inhibidores Enzimáticos/síntesis química , Flavonas/química , Flavonoides/química , Expresión Génica , Humanos , Enlace de Hidrógeno , Hidrólisis , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Pichia/genética , Pichia/metabolismo , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Trisacáridos/química , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/genética
12.
Proc Natl Acad Sci U S A ; 111(49): 17474-9, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25422423

RESUMEN

Cathepsin K is the major collagenolytic protease in bone that facilitates physiological as well as pathological bone degradation. Despite its key role in bone remodeling and for being a highly sought-after drug target for the treatment of osteoporosis, the mechanism of collagen fiber degradation by cathepsin K remained elusive. Here, we report the structure of a collagenolytically active cathepsin K protein dimer. Cathepsin K is organized into elongated C-shaped protease dimers that reveal a putative collagen-binding interface aided by glycosaminoglycans. Molecular modeling of collagen binding to the dimer indicates the participation of nonactive site amino acid residues, Q21 and Q92, in collagen unfolding. Mutations at these sites as well as perturbation of the dimer protein-protein interface completely inhibit cathepsin-K-mediated fiber degradation without affecting the hydrolysis of gelatin or synthetic peptide. Using scanning electron microscopy, we demonstrate the specific binding of cathepsin K at the edge of the fibrillar gap region of collagen fibers, which suggest initial cleavage events at the N- and C-terminal ends of tropocollagen molecules. Edman degradation analysis of collagen fiber degradation products revealed those initial cleavage sites. We propose that one cathepsin K molecule binds to collagen-bound glycosaminoglycans at the gap region and recruits a second protease molecule that provides an unfolding and cleavage mechanism for triple helical collagen. Removal of collagen-associated glycosaminoglycans prevents cathepsin K binding and subsequently fiber hydrolysis. Cathepsin K dimer and glycosaminoglycan binding sites represent novel targeting sites for the development of nonactive site-directed second-generation inhibitors of this important drug target.


Asunto(s)
Catepsina K/química , Colágeno/química , Aminoácidos/química , Sitios de Unión , Remodelación Ósea , Huesos/metabolismo , Cristalografía por Rayos X , Glicosaminoglicanos/química , Humanos , Hidrólisis , Microscopía Electrónica , Modelos Moleculares , Mutagénesis , Osteoporosis , Péptido Hidrolasas/química , Pichia , Desnaturalización Proteica , Pliegue de Proteína , Multimerización de Proteína , Estructura Terciaria de Proteína , Especificidad por Sustrato
13.
Biochim Biophys Acta ; 1834(12): 2546-53, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23954305

RESUMEN

The citrate synthase (CS) of Escherichia coli is an allosteric hexameric enzyme specifically inhibited by NADH. The crystal structure of wild type (WT) E. coli CS, determined by us previously, has no substrates bound, and part of the active site is in a highly mobile region that is shifted from the position needed for catalysis. The CS of Acetobacter aceti has a similar structure, but has been successfully crystallized with bound substrates: both oxaloacetic acid (OAA) and an analog of acetyl coenzyme A (AcCoA). We engineered a variant of E. coli CS wherein five amino acids in the mobile region have been replaced by those in the A. aceti sequence. The purified enzyme shows unusual kinetics with a low affinity for both substrates. Although the crystal structure without ligands is very similar to that of the WT enzyme (except in the mutated region), complexes are formed with both substrates and the allosteric inhibitor NADH. The complex with OAA in the active site identifies a novel OAA-binding residue, Arg306, which has no functional counterpart in other known CS-OAA complexes. This structure may represent an intermediate in a multi-step substrate binding process where Arg306 changes roles from OAA binding to AcCoA binding. The second complex has the substrate analog, S-carboxymethyl-coenzyme A, in the allosteric NADH-binding site and the AcCoA site is not formed. Additional CS variants unable to bind adenylates at the allosteric site show that this second complex is not a factor in positive allosteric activation of AcCoA binding.


Asunto(s)
Acetobacter/enzimología , Acetilcoenzima A/química , Citrato (si)-Sintasa/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , NADP/química , Acetobacter/genética , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Regulación Alostérica , Animales , Dominio Catalítico , Citrato (si)-Sintasa/genética , Citrato (si)-Sintasa/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , NADP/genética , NADP/metabolismo , Unión Proteica , Porcinos
14.
Glycobiology ; 23(9): 1075-83, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23735230

RESUMEN

Trehalose synthase (TreS) catalyzes the reversible conversion of maltose into trehalose in mycobacteria as one of three biosynthetic pathways to this nonreducing disaccharide. Given the importance of trehalose to survival of mycobacteria, there has been considerable interest in understanding the enzymes involved in its production; indeed the structures of the key enzymes in the other two pathways have already been determined. Herein, we present the first structure of TreS from Mycobacterium smegmatis, thereby providing insights into the catalytic machinery involved in this intriguing intramolecular reaction. This structure, which is of interest both mechanistically and as a potential pharmaceutical target, reveals a narrow and enclosed active site pocket within which intramolecular substrate rearrangements can occur. We also present the structure of a complex of TreS with acarbose, revealing a hitherto unsuspected oligosaccharide-binding site within the C-terminal domain. This may well provide an anchor point for the association of TreS with glycogen, thereby enhancing its role in glycogen biosynthesis and degradation.


Asunto(s)
Acarbosa/metabolismo , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Mycobacterium smegmatis/enzimología , Acarbosa/química , Acarbosa/farmacología , Secuencia de Aminoácidos , Biocatálisis/efectos de los fármacos , Dominio Catalítico/efectos de los fármacos , Glucosiltransferasas/antagonistas & inhibidores , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Alineación de Secuencia , Relación Estructura-Actividad
15.
J Med Chem ; 55(22): 10177-86, 2012 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-23050660

RESUMEN

The increasing prevalence of diabetes has accelerated the search for new drugs derived from natural sources. To define the functional features of two such families of compounds, the flavonols and the ethyl caffeates, we have determined the high-resolution structures of representative inhibitors in complex with human pancreatic α-amylase. Myricetin binds at the active site and interacts directly with the catalytic residues despite its bulky planar nature. Notably, it reduces the normal conformational flexibility of the adjacent substrate binding cleft. In contrast, bound ethyl caffeate acts by disordering precisely those polypeptide chain segments that make up the active site binding cleft. It also operates from binding sites far removed from the active site, a property not observed in any other class of human α-amylase inhibitor studied to date. Given the current inadequacy of drugs directed at diabetes, the use of optimized flavonols and ethyl caffeates may present an alternative therapeutic route.


Asunto(s)
Ácidos Cafeicos/metabolismo , Flavonoides/metabolismo , Hipoglucemiantes/metabolismo , alfa-Amilasas Pancreáticas/química , alfa-Amilasas Pancreáticas/metabolismo , Sitios de Unión , Ácidos Cafeicos/química , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Flavonoides/química , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Conformación Proteica
16.
J Biol Chem ; 286(41): 35601-35609, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-21840994

RESUMEN

Trehalose synthase (TreS) catalyzes the reversible interconversion of maltose and trehalose and has been shown recently to function primarily in the mobilization of trehalose as a glycogen precursor. Consequently, the mechanism of this intriguing isomerase is of both academic and potential pharmacological interest. TreS catalyzes the hydrolytic cleavage of α-aryl glucosides as well as α-glucosyl fluoride, thereby allowing facile, continuous assays. Reaction of TreS with 5-fluoroglycosyl fluorides results in the trapping of a covalent glycosyl-enzyme intermediate consistent with TreS being a member of the retaining glycoside hydrolase family 13 enzyme family, thus likely following a two-step, double displacement mechanism. This trapped intermediate was subjected to protease digestion followed by LC-MS/MS analysis, and Asp(230) was thereby identified as the catalytic nucleophile. The isomerization reaction was shown to be an intramolecular process by demonstration of the inability of TreS to incorporate isotope-labeled exogenous glucose into maltose or trehalose consistent with previous studies on other TreS enzymes. The absence of a secondary deuterium kinetic isotope effect and the general independence of k(cat) upon leaving group ability both point to a rate-determining conformational change, likely the opening and closing of the enzyme active site.


Asunto(s)
Proteínas Bacterianas/química , Glucosiltransferasas/química , Mycobacterium smegmatis/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Medición de Intercambio de Deuterio , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Cinética , Mycobacterium smegmatis/genética , Especificidad por Sustrato
17.
Biochemistry ; 48(45): 10752-64, 2009 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-19803533

RESUMEN

While covalent catalytic intermediates of retaining alpha-transglycosylases have been structurally characterized previously, no such information for a hydrolytic alpha-amylase has been obtained. This study presents a new "in situ" enzymatic elongation methodology that, for the first time, has allowed the isolation and structural characterization of a catalytically competent covalent glycosyl-enzyme intermediate with human pancreatic alpha-amylase. This has been achieved by the use of a 5-fluoro-beta-l-idosyl fluoride "warhead" in conjunction with either alpha-maltotriosyl fluoride or 4'-O-methyl-alpha-maltosyl fluoride as elongation agents. This generates an oligosaccharyl-5-fluoroglycosyl fluoride that then reacts with the free enzyme. The resultant covalent intermediates are extremely stable, with hydrolytic half-lives on the order of 240 h for the trisaccharide complex. In the presence of maltose, however, they undergo turnover via transglycosylation according to a half-life of less than 1 h. Structural studies of intermediate complexes unambiguously show the covalent attachment of a 5-fluoro-alpha-l-idosyl moiety in the chair conformation to the side chain of the catalytic nucleophile D197. The elongated portions of the intermediate complexes are found to bind in the high-affinity -2 and -3 binding subsites, forming extensive hydrogen-bonding interactions. Comparative structural analyses with the related noncovalent complex formed by acarbose highlight the structural rigidity of the enzyme surface during catalysis and the key role that substrate conformational flexibility must play in this process. Taken together, the structural data provide atomic details of several key catalytic steps. The scope of this elongation approach to probe the active sites and catalytic mechanisms of alpha-amylases is further demonstrated through preliminary experiments with porcine pancreatic alpha-amylase.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Páncreas/enzimología , alfa-Amilasas/química , Animales , Biocatálisis , Secuencia de Carbohidratos , Cromatografía Líquida de Alta Presión , Enlace de Hidrógeno , Cinética , Espectrometría de Masas , Datos de Secuencia Molecular , Porcinos , alfa-Amilasas/antagonistas & inhibidores
18.
J Biol Chem ; 284(12): 7897-902, 2009 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-19139097

RESUMEN

The Syd protein has been implicated in the Sec-dependent transport of polypeptides across the bacterial inner membrane. Using Nanodiscs, we here provide direct evidence that Syd binds the SecY complex, and we demonstrate that interaction involves the two electropositive and cytosolic loops of the SecY subunit. We solve the crystal structure of Syd and together with cysteine cross-link analysis, we show that a conserved concave and electronegative groove constitutes the SecY-binding site. At the membrane, Syd decreases the activity of the translocon containing loosely associated SecY-SecE subunits, whereas in detergent solution Syd disrupts the SecYEG heterotrimeric associations. These results support the role of Syd in proofreading the SecY complex biogenesis and point to the electrostatic nature of the Sec channel interaction with its cytosolic partners.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas de la Membrana/química , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Unión Proteica/fisiología , Estructura Cuaternaria de Proteína/fisiología , Estructura Secundaria de Proteína/fisiología , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Transporte de Proteínas/fisiología , Canales de Translocación SEC , Electricidad Estática
19.
J Nutr ; 138(4): 685-92, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18356321

RESUMEN

The detailed mechanistic aspects for the final starch digestion process leading to effective alpha-glucogenesis by the 2 mucosal alpha-glucosidases, human sucrase-isomaltase complex (SI) and human maltase-glucoamylase (MGAM), are poorly understood. This is due to the structural complexity and vast variety of starches and their intermediate digestion products, the poorly understood enzyme-substrate interactions occurring during the digestive process, and the limited knowledge of the structure-function properties of SI and MGAM. Here we analyzed the basic catalytic properties of the N-terminal subunit of MGAM (ntMGAM) on the hydrolysis of glucan substrates and compared it with those of human native MGAM isolated by immunochemical methods. In relation to native MGAM, ntMGAM displayed slower activity against maltose to maltopentose (G5) series glucose oligomers, as well as maltodextrins and alpha-limit dextrins, and failed to show the strong substrate inhibitory "brake" effect caused by maltotriose, maltotetrose, and G5 on the native enzyme. In addition, the inhibitory constant for acarbose was 2 orders of magnitude higher for ntMGAM than for native MGAM, suggesting lower affinity and/or fewer binding configurations of the active site in the recombinant enzyme. The results strongly suggested that the C-terminal subunit of MGAM has a greater catalytic efficiency due to a higher affinity for glucan substrates and larger number of binding configurations to its active site. Our results show for the first time, to our knowledge, that the C-terminal subunit of MGAM is responsible for the MGAM peptide's "glucoamylase" activity and is the location of the substrate inhibitory brake. In contrast, the membrane-bound ntMGAM subunit contains the poorly inhibitable "maltase" activity of the internally duplicated enzyme.


Asunto(s)
Inhibidores de Glicósido Hidrolasas , Subunidades de Proteína/química , Almidón/metabolismo , alfa-Glucosidasas/química , Acarbosa , Catálisis , Dextrinas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Oligosacáridos/metabolismo , Polisacáridos/metabolismo , Subunidades de Proteína/metabolismo , Proteínas Recombinantes , Complejo Sacarasa-Isomaltasa/metabolismo , alfa-Glucosidasas/metabolismo
20.
J Org Chem ; 73(8): 3070-7, 2008 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-18345685

RESUMEN

The synthesis of a series of 2-deoxy-2,2-dihaloglycosyl halides as potential alpha-glycosidase inactivators has been achieved via the halogenation of protected 2-fluoroglycal precursors. Direct chlorination of per-O-acetylated 2-fluoro-d-glucal and 2-fluoromaltal followed by basic deprotection yielded the corresponding 2-chloro-2-deoxy-2-fluoroglycosyl chlorides. Reaction of the per-O-acetylated 2-fluoroglycals with acetyl hypofluorite or Selectfluor yielded the 2-deoxy-2,2-difluoroglycosyl derivatives, which were converted to their alpha-chlorides using thionyl chloride and deprotected under basic conditions. Trinitrophenyl glycosides of the 2-deoxy-2,2-difluoro mono- and disaccharides were synthesized by arylation of the hemiacetals with picryl fluoride, then deprotected with HCl in methanol. All three monosaccharide derivatives caused active site-directed, time-dependent inactivation of yeast alpha-glucosidase via the trapping of covalent glycosyl-enzyme intermediates, and kinetic parameters for inactivation by each compound were determined. Surprisingly neither of the 2-deoxy-2,2-dihalomaltosyl chlorides caused time-dependent inactivation of human pancreatic alpha-amylase, despite the fact that the trinitrophenyl 2-deoxy-2,2-difluoromaltoside functioned in that mode. The trinitrophenyl glycosides appear to be approximately 1000-fold more reactive than the corresponding chlorides in the enzyme active sites.


Asunto(s)
Compuestos de Cloro/síntesis química , Compuestos de Cloro/farmacología , Compuestos de Flúor/síntesis química , Compuestos de Flúor/farmacología , Glicósido Hidrolasas/antagonistas & inhibidores , Glicósidos/síntesis química , Glicósidos/farmacología , Compuestos de Cloro/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Compuestos de Flúor/química , Glicósido Hidrolasas/metabolismo , Glicósidos/química , Humanos , Cinética , Estructura Molecular , Oxígeno/química , Páncreas/efectos de los fármacos , Páncreas/enzimología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...