Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 47
1.
bioRxiv ; 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38645235

Familial dilated cardiomyopathy (DCM) is frequently caused by autosomal dominant point mutations in genes involved in diverse cellular processes, including sarcomeric contraction. While patient studies have defined the genetic landscape of DCM, genetics are not currently used in patient care, and patients receive similar treatments regardless of the underlying mutation. It has been suggested that a precision medicine approach based on the molecular mechanism of the underlying mutation could improve outcomes; however, realizing this approach has been challenging due to difficulties linking genotype and phenotype and then leveraging this information to identify therapeutic approaches. Here, we used multiscale experimental and computational approaches to test whether knowledge of molecular mechanism could be harnessed to connect genotype, phenotype, and drug response for a DCM mutation in troponin T, deletion of K210. Previously, we showed that at the molecular scale, the mutation reduces thin filament activation. Here, we used computational modeling of this molecular defect to predict that the mutant will reduce cellular and tissue contractility, and we validated this prediction in human cardiomyocytes and engineered heart tissues. We then used our knowledge of molecular mechanism to computationally model the effects of a small molecule that can activate the thin filament. We demonstrate experimentally that the modeling correctly predicts that the small molecule can partially rescue systolic dysfunction at the expense of diastolic function. Taken together, our results demonstrate how molecular mechanism can be harnessed to connect genotype and phenotype and inspire strategies to optimize mechanism-based therapeutics for DCM.

2.
J Nucl Med ; 65(5): 775-780, 2024 May 01.
Article En | MEDLINE | ID: mdl-38548349

Tissue-resident macrophages are complementary to proinflammatory macrophages to promote the progression of atherosclerosis. The noninvasive detection of their presence and dynamic variation will be important to the understanding of their role in the pathogenesis of atherosclerosis. The goal of this study was to develop a targeted PET radiotracer for imaging CD163-positive (CD163+) macrophages in multiple mouse atherosclerosis models and assess the potential of CD163 as a biomarker for atherosclerosis in humans. Methods: CD163-binding peptide was identified using phage display and conjugated with a NODAGA chelator for 64Cu radiolabeling ([64Cu]Cu-ICT-01). CD163-overexpressing U87 cells were used to measure the binding affinity of [64Cu]Cu-ICT-01. Biodistribution studies were performed on wild-type C57BL/6 mice at multiple time points after tail vein injection. The sensitivity and specificity of [64Cu]Cu-ICT-01 in imaging CD163+ macrophages upregulated on the surface of atherosclerotic plaques were assessed in multiple mouse atherosclerosis models. Immunostaining, flow cytometry, and single-cell RNA sequencing were performed to characterize the expression of CD163 on tissue-resident macrophages. Human carotid atherosclerotic plaques were used to measure the expression of CD163+ resident macrophages and test the binding specificity of [64Cu]Cu-ICT-01. Results: [64Cu]Cu-ICT-01 showed high binding affinity to U87 cells. The biodistribution study showed rapid blood and renal clearance with low retention in all major organs at 1, 2, and 4 h after injection. In an ApoE-/- mouse model, [64Cu]Cu-ICT-01 demonstrated sensitive and specific detection of CD163+ macrophages and capability for tracking the progression of atherosclerotic lesions; these findings were further confirmed in Ldlr-/- and PCSK9 mouse models. Immunostaining showed elevated expression of CD163+ macrophages across the plaques. Flow cytometry and single-cell RNA sequencing confirmed the specific expression of CD163 on tissue-resident macrophages. Human tissue characterization demonstrated high expression of CD163+ macrophages on atherosclerotic lesions, and ex vivo autoradiography revealed specific binding of [64Cu]Cu-ICT-01 to human CD163. Conclusion: This work reported the development of a PET radiotracer binding CD163+ macrophages. The elevated expression of CD163+ resident macrophages on human plaques indicated the potential of CD163 as a biomarker for vulnerable plaques. The sensitivity and specificity of [64Cu]Cu-ICT-01 in imaging CD163+ macrophages warrant further investigation in translational settings.


Antigens, CD , Antigens, Differentiation, Myelomonocytic , Atherosclerosis , Macrophages , Positron-Emission Tomography , Receptors, Cell Surface , Animals , Mice , Positron-Emission Tomography/methods , Antigens, Differentiation, Myelomonocytic/metabolism , Antigens, CD/metabolism , Atherosclerosis/diagnostic imaging , Atherosclerosis/metabolism , Macrophages/metabolism , Receptors, Cell Surface/metabolism , Humans , Mice, Inbred C57BL , Copper Radioisotopes , Tissue Distribution , Radiopharmaceuticals/pharmacokinetics
3.
Circulation ; 149(1): 48-66, 2024 01 02.
Article En | MEDLINE | ID: mdl-37746718

BACKGROUND: Immune checkpoint inhibitors (ICIs), antibodies targeting PD-1 (programmed cell death protein 1)/PD-L1 (programmed death-ligand 1) or CTLA4 (cytotoxic T-lymphocyte-associated protein 4), have revolutionized cancer management but are associated with devastating immune-related adverse events including myocarditis. The main risk factor for ICI myocarditis is the use of combination PD-1 and CTLA4 inhibition. ICI myocarditis is often fulminant and is pathologically characterized by myocardial infiltration of T lymphocytes and macrophages. Although much has been learned about the role of T-cells in ICI myocarditis, little is understood about the identity, transcriptional diversity, and functions of infiltrating macrophages. METHODS: We used an established murine ICI myocarditis model (Ctla4+/-Pdcd1-/- mice) to explore the cardiac immune landscape using single-cell RNA-sequencing, immunostaining, flow cytometry, in situ RNA hybridization, molecular imaging, and antibody neutralization studies. RESULTS: We observed marked increases in CCR2 (C-C chemokine receptor type 2)+ monocyte-derived macrophages and CD8+ T-cells in this model. The macrophage compartment was heterogeneous and displayed marked enrichment in an inflammatory CCR2+ subpopulation highly expressing Cxcl9 (chemokine [C-X-C motif] ligand 9), Cxcl10 (chemokine [C-X-C motif] ligand 10), Gbp2b (interferon-induced guanylate-binding protein 2b), and Fcgr4 (Fc receptor, IgG, low affinity IV) that originated from CCR2+ monocytes. It is important that a similar macrophage population expressing CXCL9, CXCL10, and CD16α (human homologue of mouse FcgR4) was expanded in patients with ICI myocarditis. In silico prediction of cell-cell communication suggested interactions between T-cells and Cxcl9+Cxcl10+ macrophages via IFN-γ (interferon gamma) and CXCR3 (CXC chemokine receptor 3) signaling pathways. Depleting CD8+ T-cells or macrophages and blockade of IFN-γ signaling blunted the expansion of Cxcl9+Cxcl10+ macrophages in the heart and attenuated myocarditis, suggesting that this interaction was necessary for disease pathogenesis. CONCLUSIONS: These data demonstrate that ICI myocarditis is associated with the expansion of a specific population of IFN-γ-induced inflammatory macrophages and suggest the possibility that IFN-γ blockade may be considered as a treatment option for this devastating condition.


Immune Checkpoint Inhibitors , Myocarditis , Humans , Mice , Animals , Immune Checkpoint Inhibitors/adverse effects , CD8-Positive T-Lymphocytes , Myocarditis/chemically induced , Myocarditis/metabolism , Programmed Cell Death 1 Receptor , CTLA-4 Antigen , Ligands , Chemokines/metabolism , Macrophages/metabolism , RNA/metabolism
4.
bioRxiv ; 2023 Nov 02.
Article En | MEDLINE | ID: mdl-37961519

Breast cancer is a heterogeneous disease, and treatment is guided by biomarker profiles representing distinct molecular subtypes. Breast cancer arises from the breast ductal epithelium, and experimental data suggests breast cancer subtypes have different cells of origin within that lineage. The precise cells of origin for each subtype and the transcriptional networks that characterize these tumor-normal lineages are not established. In this work, we applied bulk, single-cell (sc), and single-nucleus (sn) multi-omic techniques as well as spatial transcriptomics and multiplex imaging on 61 samples from 37 breast cancer patients to show characteristic links in gene expression and chromatin accessibility between breast cancer subtypes and their putative cells of origin. We applied the PAM50 subtyping algorithm in tandem with bulk RNA-seq and snRNA-seq to reliably subtype even low-purity tumor samples and confirm promoter accessibility using snATAC. Trajectory analysis of chromatin accessibility and differentially accessible motifs clearly connected progenitor populations with breast cancer subtypes supporting the cell of origin for basal-like and luminal A and B tumors. Regulatory network analysis of transcription factors underscored the importance of BHLHE40 in luminal breast cancer and luminal mature cells, and KLF5 in basal-like tumors and luminal progenitor cells. Furthermore, we identify key genes defining the basal-like ( PRKCA , SOX6 , RGS6 , KCNQ3 ) and luminal A/B ( FAM155A , LRP1B ) lineages, with expression in both precursor and cancer cells and further upregulation in tumors. Exhausted CTLA4-expressing CD8+ T cells were enriched in basal-like breast cancer, suggesting altered means of immune dysfunction among breast cancer subtypes. We used spatial transcriptomics and multiplex imaging to provide spatial detail for key markers of benign and malignant cell types and immune cell colocation. These findings demonstrate analysis of paired transcription and chromatin accessibility at the single cell level is a powerful tool for investigating breast cancer lineage development and highlight transcriptional networks that define basal and luminal breast cancer lineages.

5.
Nat Cardiovasc Res ; 2(4): 399-416, 2023 Apr.
Article En | MEDLINE | ID: mdl-37583573

Recovery of cardiac function is the holy grail of heart failure therapy yet is infrequently observed and remains poorly understood. In this study, we performed single-nucleus RNA sequencing from patients with heart failure who recovered left ventricular systolic function after left ventricular assist device implantation, patients who did not recover and non-diseased donors. We identified cell-specific transcriptional signatures of recovery, most prominently in macrophages and fibroblasts. Within these cell types, inflammatory signatures were negative predictors of recovery, and downregulation of RUNX1 was associated with recovery. In silico perturbation of RUNX1 in macrophages and fibroblasts recapitulated the transcriptional state of recovery. Cardiac recovery mediated by BET inhibition in mice led to decreased macrophage and fibroblast Runx1 expression and diminished chromatin accessibility within a Runx1 intronic peak and acquisition of human recovery signatures. These findings suggest that cardiac recovery is a unique biological state and identify RUNX1 as a possible therapeutic target to facilitate cardiac recovery.

6.
bioRxiv ; 2023 Apr 29.
Article En | MEDLINE | ID: mdl-37162929

Background: Immune checkpoint inhibitors (ICIs), antibodies targeting PD-1/PD-L1 or CTLA4 have revolutionized cancer management but are associated with devastating immune-related adverse events (irAEs) including myocarditis. The main risk factor for ICI myocarditis is the use of combination PD-1 and CTLA4 inhibition. ICI-myocarditis is often fulminant and is pathologically characterized by myocardial infiltration of T lymphocytes and macrophages. While much has been learned regarding the role of T-cells in ICI-myocarditis, little is understood regarding the identity, transcriptional diversity, and functions of infiltrating macrophages. Methods: We employed an established murine ICI myocarditis model ( Ctla4 +/- Pdcd1 -/- mice) to explore the cardiac immune landscape using single-cell RNA-sequencing, immunostaining, flow cytometry, in situ RNA hybridization and molecular imaging and antibody neutralization studies. Results: We observed marked increases in CCR2 + monocyte-derived macrophages and CD8 + T-cells in this model. The macrophage compartment was heterogeneous and displayed marked enrichment in an inflammatory CCR2 + subpopulation highly expressing Cxcl9 , Cxcl10 , Gbp2b , and Fcgr4 that originated from CCR2 + monocytes. Importantly, a similar macrophage population expressing CXCL9 , CXCL10 , and CD16α (human homologue of mouse FcgR4) was found selectively expanded in patients with ICI myocarditis compared to other forms of heart failure and myocarditis. In silico prediction of cell-cell communication suggested interactions between T-cells and Cxcl9 + Cxcl10 + macrophages via IFN-γ and CXCR3 signaling pathways. Depleting CD8 + T-cells, macrophages, and blockade of IFN-γ signaling blunted the expansion of Cxcl9 + Cxcl10 + macrophages in the heart and attenuated myocarditis suggesting that this interaction was necessary for disease pathogenesis. Conclusion: These data demonstrate that ICI-myocarditis is associated with the expansion of a specific population of IFN-γ induced inflammatory macrophages and suggest the possibility that IFN-γ blockade may be considered as a treatment option for this devastating condition.

7.
Res Sq ; 2023 Jan 26.
Article En | MEDLINE | ID: mdl-36747878

Inflammation and tissue fibrosis co-exist and are causally linked to organ dysfunction. However, the molecular mechanisms driving immune-fibroblast crosstalk in human cardiac disease remains unexplored and there are currently no therapeutics to target fibrosis. Here, we performed multi-omic single-cell gene expression, epitope mapping, and chromatin accessibility profiling in 38 donors, acutely infarcted, and chronically failing human hearts. We identified a disease-associated fibroblast trajectory marked by cell surface expression of fibroblast activator protein (FAP), which diverged into distinct myofibroblasts and pro-fibrotic fibroblast populations, the latter resembling matrifibrocytes. Pro-fibrotic fibroblasts were transcriptionally similar to cancer associated fibroblasts and expressed high levels of collagens and periostin (POSTN), thymocyte differentiation antigen 1 (THY-1), and endothelin receptor A (EDNRA) predicted to be driven by a RUNX1 gene regulatory network. We assessed the applicability of experimental systems to model tissue fibrosis and demonstrated that 3 different in vivo mouse models of cardiac injury were superior compared to cultured human heart and dermal fibroblasts in recapitulating the human disease phenotype. Ligand-receptor analysis and spatial transcriptomics predicted that interactions between C-C chemokine receptor type 2 (CCR2) macrophages and fibroblasts mediated by interleukin 1 beta (IL-1ß) signaling drove the emergence of pro-fibrotic fibroblasts within spatially defined niches. This concept was validated through in silico transcription factor perturbation and in vivo inhibition of IL-1ß signaling in fibroblasts where we observed reduced pro-fibrotic fibroblasts, preferential differentiation of fibroblasts towards myofibroblasts, and reduced cardiac fibrosis. Herein, we show a subset of macrophages signal to fibroblasts via IL-1ß and rewire their gene regulatory network and differentiation trajectory towards a pro-fibrotic fibroblast phenotype. These findings highlight the broader therapeutic potential of targeting inflammation to treat tissue fibrosis and restore organ function.

8.
J Am Heart Assoc ; 12(4): e028442, 2023 02 21.
Article En | MEDLINE | ID: mdl-36752267

Background Viral myocarditis is characterized by leukocyte infiltration of the heart and cardiomyocyte death. We recently identified C-C chemokine ligand (CCL) 17 as a proinflammatory effector of C-C chemokine receptor 2-positive macrophages and dendritic cells that are recruited to the heart and contribute to adverse left ventricular remodeling following myocardial infarction and pressure overload. Methods and Results Mouse encephalomyocarditis virus was used to investigate the function of CCL17 in a viral myocarditis model. Ccl17Gfp reporter and knockout mice were used to identify the cell types that express CCL17 and delineate the functional importance of CCL17 in encephalomyocarditis virus clearance and myocardial inflammation. Cardiac CCL17 was expressed in C-C chemokine receptor 2-positive macrophages and dendritic cells following encephalomyocarditis virus infection. Colony-stimulating factor 2 (granulocyte-macrophage colony-stimulating factor) signaling was identified as a key regulator of CCL17 expression. Ccl17 deletion resulted in impaired encephalomyocarditis virus clearance, increased cardiomyocyte death, and higher mortality during infection early stage, and aggravated hypertrophy and fibrotic responses in infection long-term stage. An increased abundance of regulatory T cells was detected in the myocardium of injured Ccl17-deficient mice. Depletion of regulatory T cells in Ccl17-deficient mice abrogated the detrimental role of CCL17 deletion by restoring interferon signaling. Conclusions Collectively, these findings identify CCL17 as an important mediator of the host immune response during cardiac viral infection early stage and suggest that CCL17 targeted therapies should be avoided in acute viral myocarditis.


Myocarditis , Virus Diseases , Mice , Animals , Myocarditis/genetics , Myocarditis/prevention & control , T-Lymphocytes, Regulatory , Macrophages/metabolism , Mice, Knockout , Receptors, Chemokine/metabolism , Chemokine CCL17/metabolism
9.
Cell Metab ; 34(10): 1499-1513.e8, 2022 10 04.
Article En | MEDLINE | ID: mdl-36070756

Adipocytes transfer mitochondria to macrophages in white and brown adipose tissues to maintain metabolic homeostasis. In obesity, adipocyte-to-macrophage mitochondria transfer is impaired, and instead, adipocytes release mitochondria into the blood to induce a protective antioxidant response in the heart. We found that adipocyte-to-macrophage mitochondria transfer in white adipose tissue is inhibited in murine obesity elicited by a lard-based high-fat diet, but not a hydrogenated-coconut-oil-based high-fat diet, aging, or a corn-starch diet. The long-chain fatty acids enriched in lard suppress mitochondria capture by macrophages, diverting adipocyte-derived mitochondria into the blood for delivery to other organs, such as the heart. The depletion of macrophages rapidly increased the number of adipocyte-derived mitochondria in the blood. These findings suggest that dietary lipids regulate mitochondria uptake by macrophages locally in white adipose tissue to determine whether adipocyte-derived mitochondria are released into systemic circulation to support the metabolic adaptation of distant organs in response to nutrient stress.


Adipose Tissue, White , Antioxidants , Adipocytes/metabolism , Adipose Tissue, White/metabolism , Animals , Antioxidants/metabolism , Diet, High-Fat , Fatty Acids/metabolism , Macrophages/metabolism , Mice , Mitochondria/metabolism , Obesity/metabolism , Starch/metabolism
10.
Nat Cardiovasc Res ; 1(3): 263-280, 2022 Mar.
Article En | MEDLINE | ID: mdl-35959412

Heart failure represents a major cause of morbidity and mortality worldwide. Single-cell transcriptomics have revolutionized our understanding of cell composition and associated gene expression. Through integrated analysis of single-cell and single-nucleus RNA-sequencing data generated from 27 healthy donors and 18 individuals with dilated cardiomyopathy, here we define the cell composition of the healthy and failing human heart. We identify cell-specific transcriptional signatures associated with age and heart failure and reveal the emergence of disease-associated cell states. Notably, cardiomyocytes converge toward common disease-associated cell states, whereas fibroblasts and myeloid cells undergo dramatic diversification. Endothelial cells and pericytes display global transcriptional shifts without changes in cell complexity. Collectively, our findings provide a comprehensive analysis of the cellular and transcriptomic landscape of human heart failure, identify cell type-specific transcriptional programs and disease-associated cell states and establish a valuable resource for the investigation of human heart failure.

11.
Circulation ; 146(8): 623-638, 2022 08 23.
Article En | MEDLINE | ID: mdl-35880523

BACKGROUND: Cellular rejection after heart transplantation imparts significant morbidity and mortality. Current immunosuppressive strategies are imperfect, target recipient T cells, and have adverse effects. The innate immune response plays an essential role in the recruitment and activation of T cells. Targeting the donor innate immune response would represent the earliest interventional opportunity within the immune response cascade. There is limited knowledge about donor immune cell types and functions in the setting of cardiac transplantation, and no current therapeutics exist for targeting these cell populations. METHODS: Using genetic lineage tracing, cell ablation, and conditional gene deletion, we examined donor mononuclear phagocyte diversity and macrophage function during acute cellular rejection of transplanted hearts in mice. We performed single-cell RNA sequencing on donor and recipient macrophages and monocytes at multiple time points after transplantation. On the basis of our imaging and single-cell RNA sequencing data, we evaluated the functional relevance of donor CCR2+ (C-C chemokine receptor 2) and CCR2- macrophages using selective cell ablation strategies in donor grafts before transplant. Last, we performed functional validation that donor macrophages signal through MYD88 (myeloid differentiation primary response protein 88) to facilitate cellular rejection. RESULTS: Donor macrophages persisted in the rejecting transplanted heart and coexisted with recipient monocyte-derived macrophages. Single-cell RNA sequencing identified donor CCR2+ and CCR2- macrophage populations and revealed remarkable diversity among recipient monocytes, macrophages, and dendritic cells. Temporal analysis demonstrated that donor CCR2+ and CCR2- macrophages were transcriptionally distinct, underwent significant morphologic changes, and displayed unique activation signatures after transplantation. Although selective depletion of donor CCR2- macrophages reduced allograft survival, depletion of donor CCR2+ macrophages prolonged allograft survival. Pathway analysis revealed that donor CCR2+ macrophages are activated through MYD88/nuclear factor kappa light chain enhancer of activated B cells signaling. Deletion of MYD88 in donor macrophages resulted in reduced antigen-presenting cell recruitment, reduced ability of antigen-presenting cells to present antigen to T cells, decreased emergence of allograft-reactive T cells, and extended allograft survival. CONCLUSIONS: Distinct populations of donor and recipient macrophages coexist within the transplanted heart. Donor CCR2+ macrophages are key mediators of allograft rejection, and deletion of MYD88 signaling in donor macrophages is sufficient to suppress rejection and extend allograft survival. This highlights the therapeutic potential of donor heart-based interventions.


Heart Transplantation , Animals , Graft Rejection/prevention & control , Heart Transplantation/adverse effects , Humans , Macrophages , Mice , Mice, Inbred C57BL , Myeloid Differentiation Factor 88/genetics , Tissue Donors
12.
Circulation ; 145(10): 765-782, 2022 03 08.
Article En | MEDLINE | ID: mdl-35113652

BACKGROUND: Recent studies have established that CCR2 (C-C chemokine receptor type 2) marks proinflammatory subsets of monocytes, macrophages, and dendritic cells that contribute to adverse left ventricle (LV) remodeling and heart failure progression. Elucidation of the effector mechanisms that mediate adverse effects of CCR2+ monocytes, macrophages, and dendritic cells will yield important insights into therapeutic strategies to suppress myocardial inflammation. METHODS: We used mouse models of reperfused myocardial infarction, angiotensin II and phenylephrine infusion, and diphtheria toxin cardiomyocyte ablation to investigate CCL17 (C-C chemokine ligand 17). We used Ccl17 knockout mice, flow cytometry, RNA sequencing, biochemical assays, cell trafficking studies, and in vivo cell depletion to identify the cell types that generate CCL17, define signaling pathways that controlled its expression, delineate the functional importance of CCL17 in adverse LV remodeling and heart failure progression, and determine the mechanistic basis by which CCL17 exerts its effects. RESULTS: We demonstrated that CCL17 is expressed in CCR2+ macrophages and cluster of differentiation 11b+ conventional dendritic cells after myocardial infarction, angiotensin II and phenylephrine infusion, and diphtheria toxin cardiomyocyte ablation. We clarified the transcriptional signature of CCL17+ macrophages and dendritic cells and identified granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling as a key regulator of CCL17 expression through cooperative activation of STAT5 (signal transducer and activator of transcription 5) and canonical NF-κB (nuclear factor κ-light-chain-enhancer of activated B cells) signaling. Ccl17 deletion resulted in reduced LV remodeling, decreased myocardial fibrosis and cardiomyocyte hypertrophy, and improved LV systolic function after myocardial infarction and angiotensin II and phenylephrine infusion. We observed increased abundance of regulatory T cells (Tregs) in the myocardium of injured Ccl17 knockout mice. CCL17 inhibited Treg recruitment through biased activation of CCR4. CCL17 activated Gq signaling and CCL22 (C-C chemokine ligand 22) activated both Gq and ARRB (ß-arrestin) signaling downstream of CCR4. CCL17 competitively inhibited CCL22 stimulated ARRB signaling and Treg migration. We provide evidence that Tregs mediated the protective effects of Ccl17 deletion on myocardial inflammation and adverse LV remodeling. CONCLUSIONS: These findings identify CCL17 as a proinflammatory mediator of CCR2+ macrophages and dendritic cells and suggest that inhibition of CCL17 may serve as an effective strategy to promote Treg recruitment and suppress myocardial inflammation.


Heart Failure , Myocardial Infarction , Angiotensin II/pharmacology , Animals , Chemokine CCL17/metabolism , Chemokine CCL17/pharmacology , Diphtheria Toxin/metabolism , Diphtheria Toxin/pharmacology , Heart Failure/genetics , Heart Failure/metabolism , Humans , Inflammation/metabolism , Ligands , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenylephrine/metabolism , Phenylephrine/pharmacology , T-Lymphocytes, Regulatory/metabolism , Ventricular Remodeling
13.
Development ; 149(8)2022 04 15.
Article En | MEDLINE | ID: mdl-35178561

Tissue-resident macrophages are increasingly recognized as important determinants of organ homeostasis, tissue repair, remodeling and regeneration. Although the ontogeny and function of tissue-resident macrophages has been identified as distinct from postnatal hematopoiesis, the inability to specify, in vitro, similar populations that recapitulate these developmental waves has limited our ability to study their function and potential for regenerative applications. We took advantage of the concept that tissue-resident macrophages and monocyte-derived macrophages originate from distinct extra-embryonic and definitive hematopoietic lineages to devise a system to generate pure cultures of macrophages that resemble tissue-resident or monocyte-derived subsets. We demonstrate that human pluripotent stem cell-derived extra-embryonic-like and intra-embryonic-like hematopoietic progenitors differentiate into morphologically, transcriptionally and functionally distinct macrophage populations. Single-cell RNA sequencing of developing and mature cultures uncovered distinct developmental trajectories and gene expression programs of macrophages derived from extra-embryonic-like and intra-embryonic-like hematopoietic progenitors. These findings establish a resource for the generation of human tissue resident-like macrophages to study their specification and function under defined conditions and to explore their potential use in tissue engineering and regenerative medicine applications.


Macrophages , Pluripotent Stem Cells , Cell Differentiation/genetics , Hematopoiesis , Homeostasis , Humans , Macrophages/metabolism
14.
Immunity ; 54(9): 2072-2088.e7, 2021 09 14.
Article En | MEDLINE | ID: mdl-34320366

Cardiac macrophages represent a heterogeneous cell population with distinct origins, dynamics, and functions. Recent studies have revealed that C-C Chemokine Receptor 2 positive (CCR2+) macrophages derived from infiltrating monocytes regulate myocardial inflammation and heart failure pathogenesis. Comparatively little is known about the functions of tissue resident (CCR2-) macrophages. Herein, we identified an essential role for CCR2- macrophages in the chronically failing heart. Depletion of CCR2- macrophages in mice with dilated cardiomyopathy accelerated mortality and impaired ventricular remodeling and coronary angiogenesis, adaptive changes necessary to maintain cardiac output in the setting of reduced cardiac contractility. Mechanistically, CCR2- macrophages interacted with neighboring cardiomyocytes via focal adhesion complexes and were activated in response to mechanical stretch through a transient receptor potential vanilloid 4 (TRPV4)-dependent pathway that controlled growth factor expression. These findings establish a role for tissue-resident macrophages in adaptive cardiac remodeling and implicate mechanical sensing in cardiac macrophage activation.


Cardiomyopathy, Dilated/metabolism , Macrophage Activation/physiology , Macrophages/metabolism , Ventricular Remodeling/physiology , Animals , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , Humans , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Mutation , Myocardium/metabolism , Troponin T/genetics
15.
JACC Basic Transl Sci ; 6(4): 331-345, 2021 Apr.
Article En | MEDLINE | ID: mdl-33681537

There is ongoing debate as to whether cardiac complications of coronavirus disease-2019 (COVID-19) result from myocardial viral infection or are secondary to systemic inflammation and/or thrombosis. We provide evidence that cardiomyocytes are infected in patients with COVID-19 myocarditis and are susceptible to severe acute respiratory syndrome coronavirus 2. We establish an engineered heart tissue model of COVID-19 myocardial pathology, define mechanisms of viral pathogenesis, and demonstrate that cardiomyocyte severe acute respiratory syndrome coronavirus 2 infection results in contractile deficits, cytokine production, sarcomere disassembly, and cell death. These findings implicate direct infection of cardiomyocytes in the pathogenesis of COVID-19 myocardial pathology and provides a model system to study this emerging disease.

16.
bioRxiv ; 2020 Nov 05.
Article En | MEDLINE | ID: mdl-33173875

Epidemiological studies of the COVID-19 pandemic have revealed evidence of cardiac involvement and documented that myocardial injury and myocarditis are predictors of poor outcomes. Nonetheless, little is understood regarding SARS-CoV-2 tropism within the heart and whether cardiac complications result directly from myocardial infection. Here, we develop a human engineered heart tissue model and demonstrate that SARS-CoV-2 selectively infects cardiomyocytes. Viral infection is dependent on expression of angiotensin-I converting enzyme 2 (ACE2) and endosomal cysteine proteases, suggesting an endosomal mechanism of cell entry. After infection with SARS-CoV-2, engineered tissues display typical features of myocarditis, including cardiomyocyte cell death, impaired cardiac contractility, and innate immune cell activation. Consistent with these findings, autopsy tissue obtained from individuals with COVID-19 myocarditis demonstrated cardiomyocyte infection, cell death, and macrophage-predominate immune cell infiltrate. These findings establish human cardiomyocyte tropism for SARS-CoV-2 and provide an experimental platform for interrogating and mitigating cardiac complications of COVID-19.

17.
J Cell Biol ; 218(7): 2113-2123, 2019 07 01.
Article En | MEDLINE | ID: mdl-31123184

XRCC4-like factor (XLF) is a non-homologous end joining (NHEJ) DNA double strand break repair protein. However, XLF deficiency leads to phenotypes in mice and humans that are not necessarily consistent with an isolated defect in NHEJ. Here we show that XLF functions during DNA replication. XLF undergoes cell division cycle 7-dependent phosphorylation; associates with the replication factor C complex, a critical component of the replisome; and is found at replication forks. XLF deficiency leads to defects in replication fork progression and an increase in fork reversal. The additional loss of H2AX, which protects DNA ends from resection, leads to a requirement for ATR to prevent an MRE11-dependent loss of newly synthesized DNA and activation of DNA damage response. Moreover, H2ax-/-:Xlf-/- cells exhibit a marked dependence on the ATR kinase for survival. We propose that XLF and H2AX function in series to prevent replication stress induced by the MRE11-dependent resection of regressed arms at reversed replication forks.


DNA-Binding Proteins/genetics , Histones/genetics , MRE11 Homologue Protein/genetics , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Cell Division/genetics , DNA Breaks, Double-Stranded , DNA Damage/genetics , DNA End-Joining Repair/genetics , DNA Repair/genetics , DNA Replication/genetics , Fibroblasts/metabolism , Mice , Phosphorylation/genetics
18.
J Clin Invest ; 129(6): 2293-2304, 2019 02 26.
Article En | MEDLINE | ID: mdl-30830879

Non-apoptotic forms of cell death can trigger sterile inflammation through the release of danger-associated molecular patterns, which are recognized by innate immune receptors. However, despite years of investigation the mechanisms which initiate inflammatory responses after heart transplantation remain elusive. Here, we demonstrate that ferrostatin-1 (Fer-1), a specific inhibitor of ferroptosis, decreases the level of pro-ferroptotic hydroperoxy-arachidonoyl-phosphatidylethanolamine, reduces cardiomyocyte cell death and blocks neutrophil recruitment following heart transplantation. Inhibition of necroptosis had no effect on neutrophil trafficking in cardiac grafts. We extend these observations to a model of coronary artery ligation-induced myocardial ischemia reperfusion injury where inhibition of ferroptosis resulted in reduced infarct size, improved left ventricular systolic function, and reduced left ventricular remodeling. Using intravital imaging of cardiac transplants, we uncover that ferroptosis orchestrates neutrophil recruitment to injured myocardium by promoting adhesion of neutrophils to coronary vascular endothelial cells through a TLR4/TRIF/type I IFN signaling pathway. Thus, we have discovered that inflammatory responses after cardiac transplantation are initiated through ferroptotic cell death and TLR4/Trif-dependent signaling in graft endothelial cells. These findings provide a platform for the development of therapeutic strategies for heart transplant recipients and patients, who are vulnerable to ischemia reperfusion injury following restoration of coronary blood flow.


Adaptor Proteins, Vesicular Transport/immunology , Ferroptosis/immunology , Heart Transplantation , Myocardial Reperfusion Injury/immunology , Myocardium/immunology , Neutrophil Infiltration , Neutrophils/immunology , Signal Transduction/immunology , Toll-Like Receptor 4/immunology , Adaptor Proteins, Vesicular Transport/genetics , Animals , Cyclohexylamines/pharmacology , Ferroptosis/drug effects , Ferroptosis/genetics , Inflammation/drug therapy , Inflammation/genetics , Inflammation/immunology , Inflammation/pathology , Mice , Mice, Knockout , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocardium/pathology , Neutrophils/pathology , Phenylenediamines/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics , Toll-Like Receptor 4/genetics , Ventricular Function, Left/drug effects , Ventricular Function, Left/genetics , Ventricular Function, Left/immunology
19.
Circ Res ; 124(2): 263-278, 2019 01 18.
Article En | MEDLINE | ID: mdl-30582448

RATIONALE: Recent advancements have brought to light the origins, complexity, and functions of tissue-resident macrophages. However, in the context of tissue injury or disease, large numbers of monocytes infiltrate the heart and are thought to contribute to adverse remodeling and heart failure pathogenesis. Little is understood about the diversity of monocytes and monocyte-derived macrophages recruited to the heart after myocardial injury, including the mechanisms that regulate monocyte recruitment and fate specification. OBJECTIVE: We sought to test the hypothesis that distinct subsets of tissue-resident CCR2- (C-C chemokine receptor 2) and CCR2+ macrophages orchestrate monocyte recruitment and fate specification after myocardial injury. METHODS AND RESULTS: We reveal that in numerous mouse models of cardiomyocyte cell death (permanent myocardial infarction, reperfused myocardial infarction, and diphtheria toxin cardiomyocyte ablation), there is a shift in macrophage ontogeny whereby tissue-resident macrophages are predominately replaced by infiltrating monocytes and monocyte-derived macrophages. Using syngeneic cardiac transplantation to model ischemia-reperfusion injury and distinguish tissue-resident from recruited cell populations in combination with intravital 2-photon microscopy, we demonstrate that monocyte recruitment is differentially orchestrated by distinct subsets of tissue-resident cardiac macrophages. Tissue-resident CCR2+ macrophages promote monocyte recruitment through an MYD88 (myeloid differentiation primary response 88)-dependent mechanism that results in release of MCPs (monocyte chemoattractant proteins) and monocyte mobilization. In contrast, tissue-resident CCR2- macrophages inhibit monocyte recruitment. Using CD (cluster of differentiation) 169-DTR (diphtheria toxin receptor) and CCR2-DTR mice, we further show that selective depletion of either tissue-resident CCR2- or CCR2+ macrophages before myocardial infarction results in divergent effects on left ventricular function, myocardial remodeling, and monocyte recruitment. Finally, using single-cell RNA sequencing, we show that tissue-resident cardiac macrophages differentially instruct monocyte fate specification. CONCLUSIONS: Collectively, these observations establish the mechanistic basis by which monocytes are initially recruited to the injured heart and provide new insights into the heterogeneity of monocyte-derived macrophages.


Cell Lineage , Chemotaxis, Leukocyte , Macrophages/metabolism , Monocytes/metabolism , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Receptors, CCR2/metabolism , Animals , Cell Death , Diphtheria Toxin/pharmacology , Disease Models, Animal , Heart Transplantation , Macrophage Activation , Macrophages/pathology , Mice, Inbred C57BL , Mice, Knockout , Monocytes/pathology , Myeloid Differentiation Factor 88/metabolism , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocytes, Cardiac/pathology , Receptors, CCR2/genetics , Signal Transduction , Ventricular Function, Left , Ventricular Remodeling
20.
Mol Cell ; 71(2): 332-342.e8, 2018 07 19.
Article En | MEDLINE | ID: mdl-30017584

The modulator of retrovirus infection (MRI or CYREN) is a 30-kDa protein with a conserved N-terminal Ku-binding motif (KBM) and a C-terminal XLF-like motif (XLM). We show that MRI is intrinsically disordered and interacts with many DNA damage response (DDR) proteins, including the kinases ataxia telangiectasia mutated (ATM) and DNA-PKcs and the classical non-homologous end joining (cNHEJ) factors Ku70, Ku80, XRCC4, XLF, PAXX, and XRCC4. MRI forms large multimeric complexes that depend on its N and C termini and localizes to DNA double-strand breaks (DSBs), where it promotes the retention of DDR factors. Mice deficient in MRI and XLF exhibit embryonic lethality at a stage similar to those deficient in the core cNHEJ factors XRCC4 or DNA ligase IV. Moreover, MRI is required for cNHEJ-mediated DSB repair in XLF-deficient lymphocytes. We propose that MRI is an adaptor that, through multivalent interactions, increases the avidity of DDR factors to DSB-associated chromatin to promote cNHEJ.


DNA Breaks, Double-Stranded , DNA End-Joining Repair , Animals , Cell Cycle Proteins/metabolism , Chromatin/genetics , Chromatin/metabolism , DNA Ligase ATP/genetics , DNA Repair , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Ku Autoantigen/genetics , Mice
...