Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochimie ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38908539

RESUMEN

Amyloidosis forms a large family of pathologies associated with amyloid deposit generated by the formation of amyloid fibrils or plaques. The amyloidogenic proteins and peptides involved in these processes are targeted against almost all organs. In brain they are associated with neurodegenerative disease, and the Translocator Protein (TSPO), overexpressed in these inflammatory conditions, is one of the target for the diagnostic. Moreover, TSPO ligands have been described as promising therapeutic drugs for neurodegenerative diseases. Type 2 diabetes, another amyloidosis, is due to a beta cell mass decrease that has been linked to hIAPP (human islet amyloid polypeptide) fibril formation, leading to the reduction of insulin production. In the present study, in a first approach, we link overexpression of TSPO and inflammation in potentially prediabetic patients. In a second approach, we observed that TSPO deficient rats have higher level of insulin secretion in basal conditions and more IAPP fibrils formation compared with wild type animals. In a third approach, we show that diabetogenic conditions also increase TSPO overexpression and IAPP fibril formation in rat beta pancreatic cell line (INS-1E). These data open the way for further studies in the field of type 2 diabetes treatment or prevention.

2.
Basic Res Cardiol ; 119(3): 481-503, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38517482

RESUMEN

Hypercholesterolemia is a major risk factor for coronary artery diseases and cardiac ischemic events. Cholesterol per se could also have negative effects on the myocardium, independently from hypercholesterolemia. Previously, we reported that myocardial ischemia-reperfusion induces a deleterious build-up of mitochondrial cholesterol and oxysterols, which is potentiated by hypercholesterolemia and prevented by translocator protein (TSPO) ligands. Here, we studied the mechanism by which sterols accumulate in cardiac mitochondria and promote mitochondrial dysfunction. We performed myocardial ischemia-reperfusion in rats to evaluate mitochondrial function, TSPO, and steroidogenic acute regulatory protein (STAR) levels and the related mitochondrial concentrations of sterols. Rats were treated with the cholesterol synthesis inhibitor pravastatin or the TSPO ligand 4'-chlorodiazepam. We used Tspo deleted rats, which were phenotypically characterized. Inhibition of cholesterol synthesis reduced mitochondrial sterol accumulation and protected mitochondria during myocardial ischemia-reperfusion. We found that cardiac mitochondrial sterol accumulation is the consequence of enhanced influx of cholesterol and not of the inhibition of its mitochondrial metabolism during ischemia-reperfusion. Mitochondrial cholesterol accumulation at reperfusion was related to an increase in mitochondrial STAR but not to changes in TSPO levels. 4'-Chlorodiazepam inhibited this mechanism and prevented mitochondrial sterol accumulation and mitochondrial ischemia-reperfusion injury, underlying the close cooperation between STAR and TSPO. Conversely, Tspo deletion, which did not alter cardiac phenotype, abolished the effects of 4'-chlorodiazepam. This study reveals a novel mitochondrial interaction between TSPO and STAR to promote cholesterol and deleterious sterol mitochondrial accumulation during myocardial ischemia-reperfusion. This interaction regulates mitochondrial homeostasis and plays a key role during mitochondrial injury.


Asunto(s)
Mitocondrias Cardíacas , Daño por Reperfusión Miocárdica , Fosfoproteínas , Animales , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/genética , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Mitocondrias Cardíacas/efectos de los fármacos , Masculino , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Colesterol/metabolismo , Ratas , Receptores de GABA/metabolismo , Receptores de GABA/genética , Ratas Wistar , Modelos Animales de Enfermedad , Benzodiazepinonas , Proteínas Portadoras , Receptores de GABA-A
3.
Biochimie ; 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38432291

RESUMEN

The mitochondrial translocator protein (TSPO) is an outer mitochondrial protein membrane with high affinity for cholesterol. It is expressed in most tissues but is more particularly enriched in steroidogenic tissues. TSPO is involved in various biological mechanisms and TSPO regulation has been related to several diseases. However, despite a considerable number of published studies interested in TSPO over the past forty years, the precise function of the protein remains obscure. Most of the functions attributed to TSPO have been identified using pharmacological ligands of this protein, leading to much debate about the accuracy of these findings. In addition, research on the physiological role of TSPO has been hampered by the lack of in vivo deletion models. Studies to perform genetic deletion of Tspo in animal models have long been unsuccessful, which led to the conclusions that the deletion was deleterious and the gene essential to life. During the last decades, thanks to the significant technical advances allowing genome modification, several models of animal genetically modified for TSPO have been developed. These models have modified our view regarding TSPO and profoundly improved our fundamental knowledge on this protein. However, to date, they did not allow to elucidate the precise molecular function of TSPO and numerous questions persist concerning the physiological role of TSPO and its future as a therapeutic target. This article chronologically reviews the development of deletion and induction models of TSPO.

4.
Basic Res Cardiol ; 118(1): 26, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400630

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is a major public health concern. Its outcome is poor and, as of today, barely any treatments have been able to decrease its morbidity or mortality. Cardiosphere-derived cells (CDCs) are heart cell products with anti-fibrotic, anti-inflammatory and angiogenic properties. Here, we tested the efficacy of CDCs in improving left ventricular (LV) structure and function in pigs with HFpEF. Fourteen chronically instrumented pigs received continuous angiotensin II infusion for 5 weeks. LV function was investigated through hemodynamic measurements and echocardiography at baseline, after 3 weeks of angiotensin II infusion before three-vessel intra-coronary CDC (n = 6) or placebo (n = 8) administration and 2 weeks after treatment (i.e., at completion of the protocol). As expected, arterial pressure was significantly and similarly increased in both groups. This was accompanied by LV hypertrophy that was not affected by CDCs. LV systolic function remained similarly preserved during the whole protocol in both groups. In contrast, LV diastolic function was impaired (increases in Tau, LV end-diastolic pressure as well as E/A, E/E'septal and E/E'lateral ratios) but CDC treatment significantly improved all of these parameters. The beneficial effect of CDCs on LV diastolic function was not explained by reduced LV hypertrophy or increased arteriolar density; however, interstitial fibrosis was markedly reduced. Three-vessel intra-coronary administration of CDCs improves LV diastolic function and reduces LV fibrosis in this hypertensive model of HFpEF.


Asunto(s)
Insuficiencia Cardíaca , Animales , Angiotensina II , Fibrosis , Hipertrofia Ventricular Izquierda , Volumen Sistólico , Porcinos , Función Ventricular Izquierda
5.
Fundam Clin Pharmacol ; 37(4): 739-752, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36797226

RESUMEN

Mitochondrial permeability transition pore (mPTP) opening is a critical event leading to cell injury during myocardial ischemia-reperfusion but having a reliable cellular model to study the effect of drugs targeting mPTP is an unmet need. This study evaluated whether the Ca2+ electrogenic ionophore ferutinin is a relevant tool to induce mPTP in cardiomyocytes. mPTP opening was monitored using the calcein/cobalt fluorescence technique in adult cardiomyocytes isolated from wild-type and cyclophylin D (CypD) knock-out mice. Concomitantly, the effect of ferutinin was assessed in isolated myocardial mitochondria. Our results confirmed the Ca2+ ionophoric effect of ferutinin in isolated mitochondria and cardiomyocytes. Ferutinin induced all the hallmarks of mPTP opening in cells (loss of calcein, of mitochondrial potential and cell death), but none of them could be inhibited by CypD deletion or cyclosporine A, indicating that mPTP opening was not the major contributor to the effect of ferutinin. This was confirmed in isolated mitochondria where ferutinin acts by different mechanisms dependent and independent of the mitochondrial membrane potential. At low ferutinin/mitochondria concentration ratio, ferutinin displays protonophoric-like properties, lowering the mitochondrial membrane potential and limiting oxidative phosphorylation without mitochondrial swelling. At high ferutinin/mitochondria ratio, ferutinin induced a sudden Ca2+ independent mitochondrial swelling, which is only partially inhibited by cyclosporine A. Together, these result show that ferutinin is not a suitable tool to investigate CypD-dependent mPTP opening in isolated cardiomyocytes because it possesses other mitochondrial properties such as swelling induction and mitochondrial uncoupling properties which impede its utilization.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Ratones , Animales , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/farmacología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Ciclosporina/farmacología , Ciclosporina/metabolismo , Miocitos Cardíacos , Mitocondrias Cardíacas/metabolismo , Ratones Noqueados , Calcio/metabolismo
6.
Circulation ; 144(7): 559-574, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34162223

RESUMEN

BACKGROUND: Aging myocardium undergoes progressive cardiac hypertrophy and interstitial fibrosis with diastolic and systolic dysfunction. Recent metabolomics studies shed light on amino acids in aging. The present study aimed to dissect how aging leads to elevated plasma levels of the essential amino acid phenylalanine and how it may promote age-related cardiac dysfunction. METHODS: We studied cardiac structure and function, together with phenylalanine catabolism in wild-type (WT) and p21-/- mice (male; 2-24 months), with the latter known to be protected from cellular senescence. To explore phenylalanine's effects on cellular senescence and ectopic phenylalanine catabolism, we treated cardiomyocytes (primary adult rat or human AC-16) with phenylalanine. To establish a role for phenylalanine in driving cardiac aging, WT male mice were treated twice a day with phenylalanine (200 mg/kg) for a month. We also treated aged WT mice with tetrahydrobiopterin (10 mg/kg), the essential cofactor for the phenylalanine-degrading enzyme PAH (phenylalanine hydroxylase), or restricted dietary phenylalanine intake. The impact of senescence on hepatic phenylalanine catabolism was explored in vitro in AML12 hepatocytes treated with Nutlin3a (a p53 activator), with or without p21-targeting small interfering RNA or tetrahydrobiopterin, with quantification of PAH and tyrosine levels. RESULTS: Natural aging is associated with a progressive increase in plasma phenylalanine levels concomitant with cardiac dysfunction, whereas p21 deletion delayed these changes. Phenylalanine treatment induced premature cardiac deterioration in young WT mice, strikingly akin to that occurring with aging, while triggering cellular senescence, redox, and epigenetic changes. Pharmacological restoration of phenylalanine catabolism with tetrahydrobiopterin administration or dietary phenylalanine restriction abrogated the rise in plasma phenylalanine and reversed cardiac senescent alterations in aged WT mice. Observations from aged mice and human samples implicated age-related decline in hepatic phenylalanine catabolism as a key driver of elevated plasma phenylalanine levels and showed increased myocardial PAH-mediated phenylalanine catabolism, a novel signature of cardiac aging. CONCLUSIONS: Our findings establish a pathogenic role for increased phenylalanine levels in cardiac aging, linking plasma phenylalanine levels to cardiac senescence via dysregulated phenylalanine catabolism along a hepatic-cardiac axis. They highlight phenylalanine/PAH modulation as a potential therapeutic strategy for age-associated cardiac impairment.


Asunto(s)
Envejecimiento/metabolismo , Miocardio/metabolismo , Fenilalanina/metabolismo , Envejecimiento/patología , Aminoácidos/metabolismo , Animales , Biomarcadores , Biopterinas/análogos & derivados , Biopterinas/farmacología , Catálisis , Senescencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Cardiopatías/etiología , Cardiopatías/metabolismo , Cardiopatías/patología , Cardiopatías/fisiopatología , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , Miocardio/patología , Miocitos Cardíacos/metabolismo , Fenilalanina/sangre , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...