Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; : e202402010, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38855991

RESUMEN

We report herein of a novel, enantioselective and rhodium- catalyzed cyclisation of allenyl alcohols towards chiral α-vinylic, cyclic ethers employing a rhodium/(R,R)-Me-ferrocelane catalyst. The corresponding chiral cyclic products were obtained in general high yield and enantioselectivities. The synthetic value of our obtained products was further exemplified by transformations of the allylic ether function. Furthermore, applying our newly developed method in our previously reported route towards the total synthesis of (R,R,R)-α-tocopherol, we were able to devise a significantly improved 2nd generation total synthesis with 12 steps in the longest linear sequence and an overall total yield of 24%.

2.
Org Lett ; 26(21): 4438-4442, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38767303

RESUMEN

Hydrothiolation presents an attractive way to transform allenes into allylic thioethers. Herein, we described an efficient visible-light photoredox-promoted nickel-catalyzed hydrothiolation of allenes with functionalized aromatic and aliphatic thiols. This synergistic catalytic system exhibits unprecedentedly high reactivities and regiocontrol for the construction of allylic thioethers, representing the unique synthetic utility of the earth-abundant Ni-catalyzed method compared with the related noble-metal-catalyzed allylation reactions.

3.
J Am Chem Soc ; 146(19): 13210-13225, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38709955

RESUMEN

A new class of photoswitchable NHC ligands, named azImBA, has been developed by integrating azobenzene into a previously unreported imidazobenzoxazol-1-ylidene framework. These rigid photochromic carbenes enable precise control over confinement around a metal's coordination sphere. As a model system, gold(I) complexes of these NHCs exhibit efficient bidirectional E-Z isomerization under visible light, offering a versatile platform for reversibly photomodulating the reactivity of organogold species. Comprehensive kinetic studies of the protodeauration reaction reveal rate differences of up to 2 orders of magnitude between the E and Z isomers of the NHCs, resulting in a quasi-complete visible-light-gated ON/OFF switchable system. Such a high level of photomodulation efficiency is unprecedented for gold complexes, challenging the current state-of-the-art in photoswitchable organometallics. Thorough investigations into the ligand properties paired with structure-reactivity correlations underscored the unique ligand's steric features as a key factor for reactivity. This effective photocontrol strategy was further validated in gold(I) catalysis, enabling in situ photoswitching of catalytic activity in the intramolecular hydroalkoxylation and -amination of alkynes. Given the significance of these findings and its potential as a widely applicable, easily customizable photoswitchable ancillary ligand platform, azImBA is poised to stimulate the development of adaptive, multifunctional metal complexes.

4.
Chem Commun (Camb) ; 60(41): 5451-5454, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38689554

RESUMEN

The first example of intramolecular nucleophilic addition of 1,4-diazabutatriene to ester is disclosed. This approach provides a facile and versatile synthesis for functionalized 2H-1,4-benzoxazines under metal-, reagent-, and solvent-free conditions. Experimental and computational studies revealed the pivotal role of 1,5-acyl migration as the self-catalytic step in the reaction selectivity.

5.
Org Lett ; 26(12): 2451-2455, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38506278

RESUMEN

The enantioselective rhodium-catalyzed cyclization of 2-allenylbenzoxazoles to the corresponding vinyl-functionalized, fused heterocyclic structures is reported. The presented method offers several advantages, including the use of low catalyst loadings, commercially available catalyst precursors, and mild reaction conditions. Due to its broad scope, scalability, and valuable products, we consider this methodology to be a useful tool for the construction of benzoxazole-containing building blocks.

6.
Angew Chem Int Ed Engl ; 63(14): e202317981, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38323896

RESUMEN

Enantiomerically enriched crown ethers (CE) exhibit strong asymmetric induction in phase transfer catalysis, supramolecular catalysis and molecular recognition processes. Traditional methods have often been used to access these valuable compounds, which limit their diversity and consequently their applicability. Herein, a practical catalytic method is described for the gram scale synthesis of a class of chiral CEs (aza-crown ethers; ACEs) using Rh-catalyzed hydroamination of bis(allenes) with diamines. Using this approach, a wide range of chiral vinyl functionalized CEs with ring sizes ranging from 12 to 36 have been successfully prepared in high yields of up to 92 %, dr of up to >20 : 1 and er of up to >99 : 1. These vinyl substituted CEs allow for further diversification giving facile access to various CE derivatives as well as to their three-dimensional analogues using ring-closing metathesis. Some of these chiral CEs themselves display high potential for use in asymmetric catalysis.

7.
Chemistry ; 30(26): e202400188, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38411034

RESUMEN

Herein, we present an efficient and atom-economic tandem hydroformylation organocatalyzed Friedel-Crafts reaction sequence for the synthesis of diindolylmethanes. Classic syntheses have relied on (Lewis) acid activation of aldehydes, which are often not commercially available and rather sensitive in handling. In contrast, the combination of rhodium-catalyzed hydroformylation and subsequent organocatalytic activation of the in-situ formed aldehydes allows the use of readily available and stable alkenes with various functional groups while avoiding acidic conditions to expand the range of available diindolylmethanes. A broad scope of diindolylmethanes was prepared in yields up to 85 % demonstrates the utility of the presented method.

8.
Chemistry ; 30(9): e202303752, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38109037

RESUMEN

Herein, a highly efficient five-step reaction sequence to BODIPYs is presented. The key step is the combination of transition metal-catalyzed in-situ generation of aldehydes and their subsequent organocatalytic activation to yield dipyrromethanes, which are further converted to the corresponding BODIPY. Classic syntheses towards BODIPYs have relied on aldehydes or acid chlorides, which are often not commercially available and rather sensitive to handle. The presented approach starts from readily available and stable alkenes or aryl-bromides, which allows to extend the range of readily available BODIPYs that can be tailored for their specific use. The synthesis of 55 derivatives with overall yields of up to 78 % demonstrates the wide applicability and advantages of the presented method.

9.
Acc Chem Res ; 56(24): 3676-3693, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38064346

RESUMEN

ConspectusFinding efficient synthetic methods for the asymmetric synthesis of complex molecules has always been of interest to organic chemists. Creating and controlling the stereochemistry of stereogenic centers bearing branched allylic moieties in organic molecules using a catalytic process is an attractive and successful method for the synthesis of several natural products and medicinally important compounds. Remarkable progress toward their synthesis has been achieved via transition-metal catalysis, especially in the case of allylic substitution and allylic C-H oxidation chemistry. However, for allylic substitution the preinstallation of a leaving group is essential, and for allylic C-H oxidation, stoichiometric amounts of oxidant are required. Besides that, the control of regioselectivity with these methods is often problematic because the linear product can be produced as a major isomer. Our research group has developed a regioselective, enantioselective, and atom economic route toward the more valuable branched product via a Rh-catalyzed coupling of easily accessible alkynes or the double-bond isomeric allenes with pronucleophiles. It was demonstrated that, using this new approach, it is possible to add different pronucleophiles to alkynes or allenes to form branched allylic moieties through C-C and C-heteroatom bond formation. Since new organic reactions offer new opportunities in chemical synthesis and the benchmark for new synthetic methods is their application in target-oriented synthesis, we have demonstrated several successful syntheses of natural products and medicinally relevant targets. For example, in the total syntheses of Quercuslactones, Helicascolides A-C, Epothilone D, Homolargazole, and Thailandepsin B, the Rh-catalyzed hydro-oxycarbonylation of allenes was used as key step via C-O bond formation. Remarkably, the Rh-catalyzed C2-symmetric dimerization strategy was used to synthesize the complex molecules Clavosolide A and Vermiculine, leading to an extreme increase in structural complexity within a single step. For the total syntheses of Centrolobine, Pitavastatin, and Rosuvastatin, C-O bond formation was achieved through the addition of a hydroxy function to the allene moiety. The potential of the addition of nitrogen pronucleophiles to allenes was demonstrated in the total syntheses of Cusparein, Angusterein, Cermicin C, Senepodin G, Homoproline, Pipecolinol, Coniceine, Coniine, Ruxolitinib, Sitagliptin, Abacavir, Glucokinase activators, and Chaetominine. All of these examples testify to the wide applicability of the Rh-catalyzed addition of pronucleophiles to allenes or alkynes in target-oriented synthesis, and in this Account we summarize our contribution.

10.
Chemistry ; 29(33): e202300719, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-36928880

RESUMEN

The Pd-catalyzed Suzuki-Miyaura cross-couplings (SMRs) are utilized as the most practical method to construct C-C bond, especial for biaryls. However, a major disadvantage of current protocols is the requirement of excess organoboron coupling partner (1.5-3.0 equiv.). Herein, a novel palladacyclic 1,3-bis(2,6-diisopropylphenyl)acenaphthoimidazol-2-ylidene (AnIPr) precatalyst possessing a chiral oxazoline was designed, which enabled a general protocol towards bulky tri-ortho-substituted biaryls, ternaphthalenes and diarylanthracenes via the Pd-catalyzed SMR employing equimolar organoborons and aryl bromides. A remarkable scope of substrates with various functional groups and heterocycles were well compatible with an adaptability to synthesize useful ligands.


Asunto(s)
Bromuros , Paladio , Paladio/química , Catálisis , Ligandos , Bromuros/química
11.
Eur J Med Chem ; 249: 115139, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36736153

RESUMEN

For a long time, the development of bromodomain (BD) inhibitors (BDi) was almost exclusively related to the BET family. More recently, BDi for BDs outside the BET family have also been developed. Here we present a novel pan-BDi with micromolar affinities to various BDs, and nanomolar affinities to representatives of BD families I, II (Bromodomain and Extra-Terminal Domain (BET) family), III, and IV. The inhibitor shows a broad activity profile with nanomolar growth inhibition (GI50) values on various cancer cell lines. Subsequently, we were able to control the selectivity of the inhibitor by simple modifications and turned it into a highly selective BRD9 inhibitor.


Asunto(s)
Diseño de Fármacos , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Dominios Proteicos , Línea Celular , Epigénesis Genética
12.
Chem Commun (Camb) ; 59(15): 2122-2125, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36723349

RESUMEN

A visible-light-induced, intramolecular, reductive cyclisation of ketones with an unsaturated hydrocarbon moiety was developed. In contrast to conventional protocols requiring resource precious or hazardous metal sources, this method enables facile access to ketyl radicals under metal-free and mild reaction conditions. By polarity-reversed, ketyl radical hydroalkoxylation of alkynes and allenes, a variety of five-membered (hetero-)cyclic products were generated in good yields with good to excellent stereoselectivities. The embedded homoallylic tertiary alcohol could be transformed into other useful functionalities, highlighting the synthetic utility of this reaction. This efficient and sustainable ketyl-alkyne/allene cross coupling also features broad functional group tolerance and scalability.

13.
Org Lett ; 25(1): 16-20, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36542429

RESUMEN

A diastereoselective cascade annulation between allenoates and in-situ generated isoquinoline N-oxides generating sp3-rich bridged polycyclic heterocycles is disclosed. The reaction proceeds through an unprecedented non-rearomatized rearrangement and allows access to a broad range of bridged heterocycles in 38-93% yields with excellent functional group tolerance and high diastereoselectivity. Density functional theory calculations provided key insights into the possible reaction pathway and the stereoselectivity of this procedure.

14.
Org Lett ; 24(43): 7967-7971, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36278859

RESUMEN

The γ-selective addition of chloroprene Grignards to aromatic N-Boc aldimines enabled by 2,2'-dimorpholinodiethyl ether (DMDEE) yields the corresponding N-Boc protected ß-allenylamines in good yields and regioselectivities. Transmetalation to zinc bromide also allows the addition of chloroprene Grignard to aliphatic aldimines in good yields. The obtained ß-allenylamines were shown to be easily deprotected under acidic conditions and can be subjected to various transformations to access complex molecules.

15.
Angew Chem Int Ed Engl ; 61(20): e202200105, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35170841

RESUMEN

Intermolecular photocatalytic hydroaminoalkylation (HAA) of alkenes have emerged as a powerful method for the construction of alkyl amines. Although there are some studies aiming at stereoselective photocatalytic HAA reactions, the alkenes are limited to electrophilic alkenes. Herein, we report a highly regio-, diastereo-, and enantioselective HAA of electron-rich dienol ethers and α-amino radicals derived from α-amino acids using a unified photoredox and palladium catalytic system. This decarboxylative 1,2-Markovnikov addition enables the construction of vicinal amino tertiary ethers with high levels of regio- (up to >19 : 1 rr), diastereo- (up to >19 : 1 dr), and enantioselectivity control (up to >99 % ee). Mechanistic studies support a reversible hydropalladation as a key step.


Asunto(s)
Éteres , Paladio , Alquenos/química , Catálisis , Éteres/química , Paladio/química , Estereoisomerismo
16.
Org Lett ; 23(23): 9168-9172, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34806888

RESUMEN

The intramolecular addition of tosylureas to allenes is highly syn-/anti-diastereoselective when employing a palladium or rhodium-based catalytic system and affords 1,3-cyclic ureas. Under palladium catalysis a range of thermodynamic anti-tetrahydropyrimidinones are accessible, while rhodium catalysis allows synthesis of the kinetic syn-tetrahydropyrimidinones. For a representative scope of substrates both cyclic ureas were obtained in excellent yields and diastereoselectivities. The obtained tetrahydropyrimidinones were shown to be easily deprotected and modified to demonstrate the synthetic value.

17.
Artículo en Inglés | MEDLINE | ID: mdl-34798417

RESUMEN

CRP is an important mediator of the inflammatory response. Pro-inflammatory CRP effects are mediated by pCRP* and mCRP, dissociation products of the native pCRP. The concentration of pCRP during inflammation may rise up to concentrations 1000-fold from baseline. By prevention of the conformational change from pCRP to pCRP*, pro-inflammatory immune responses can be inhibited and local tissue damage reduced. 3-(Dibutylamino)propylphosphonic acid (C10m) is a new substance that can suppress ischemic-reperfusion injury by targeting CRP in the complement cascade. It hampers dissociation of pCRP into its monomers, thus preventing exacerbation of tissue inflammation subsequent to reperfusion injury. In this study, the pharmacokinetics and metabolism of the new drug candidate C10m was investigated. A sensitive and selective method for detection of C10m and its metabolites from plasma and urine was developed with LC-MS and LC-MS/MS coupling. The LLOQ is at 0.1 µg mL-1 and recovery at 87.4% ± 2.8%. Accuracy and precision were within 15% coefficient of variation and nominal concentrations, respectively. Concentration time profile after i.v. bolus injection of C10m was analyzed by LC-MS/MS. Bioavailability has shown to be below 30%. Most likely due to the compounds' very polar chemical properties, no phase-I or phase-II metabolism could be observed. Absence of phase-I metabolism was cross-checked by performing microsomal incubations. Our study revealed that C10m is rapidly eliminated via urine excretion and that half-times appear to be increased with coadministration of the target pCRP.


Asunto(s)
Antiinflamatorios/farmacocinética , Cromatografía Liquida/métodos , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Fosforilcolina/farmacocinética , Espectrometría de Masas en Tándem/métodos , Animales , Antiinflamatorios/sangre , Antiinflamatorios/orina , Proteínas del Sistema Complemento/inmunología , Humanos , Espectrometría de Masas , Daño por Reperfusión Miocárdica/inmunología , Fosforilcolina/sangre , Fosforilcolina/orina , Ratas
18.
Org Lett ; 23(21): 8199-8203, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34618449

RESUMEN

A novel methodology to access synthetically versatile vinylboronic esters through a ligand-controlled cobalt-catalyzed hydroboration of terminal and internal alkynes is reported. The approach relies on the in situ reduction of Co(II) by H-BPin in the presence of bisphosphine ligands generating catalytically active Co(I) hydride complexes. This procedure avoids the use of stoichiometric amounts of base, and no boron-containing byproducts are generated which is translated into high functional group tolerance and atom economy.

19.
J Med Chem ; 64(19): 14620-14646, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34582215

RESUMEN

Multitarget drugs are an emerging alternative to combination therapies. In three iterative cycles of design, synthesis, and biological evaluation, we developed a novel type of potent hybrid inhibitors of bromodomain, and extra-terminal (BET) proteins and histone deacetylases (HDACs) based on the BET inhibitor XD14 and well-established HDAC inhibitors. The most promising new hybrids, 49 and 61, displayed submicromolar inhibitory activity against HDAC1-3 and 6, and BRD4(1), and possess potent antileukemia activity. 49 induced apoptosis more effectively than the combination of ricolinostat and birabresib (1:1). The most balanced dual inhibitor, 61, induced significantly more apoptosis than the related control compounds 62 (no BRD4(1) affinity) and 63 (no HDAC inhibition) as well as the 1:1 combination of both. Additionally, 61 was well tolerated in an in vivo zebrafish toxicity model. Overall, our data suggest an advantage of dual HDAC/BET inhibitors over the combination of two single targeted compounds.


Asunto(s)
Antineoplásicos/química , Histona Desacetilasas/química , Leucemia/tratamiento farmacológico , Leucemia/patología , Proteínas Nucleares/antagonistas & inhibidores , Pirroles/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Histona Desacetilasas/farmacología , Histona Desacetilasas/uso terapéutico , Humanos , Factores de Transcripción/antagonistas & inhibidores
20.
Org Lett ; 23(17): 6765-6769, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34416108

RESUMEN

CuH-catalyzed intramolecular cyclization and intermolecular allylation of benzimidazoles with allenes have been described. The reaction proceeded smoothly with the catalytic system of Cu(OAc)2/Xantphos and catalytic amount of (MeO)2MeSiH. This protocol features mild reaction conditions and a good tolerance of substrates bearing electron-withdrawing, electron-donating, or electron-neutral groups. A new catalytic mechanism was proposed for this copper hydride catalytic system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA