Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; : e0152424, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953632

RESUMEN

The hydroxyacid glycolate is a highly abundant carbon source in the environment. Glycolate is produced by unicellular photosynthetic organisms and excreted at petagram scales to the environment, where it serves as growth substrate for heterotrophic bacteria. In microbial metabolism, glycolate is first oxidized to glyoxylate by the enzyme glycolate oxidase. The recently described ß-hydroxyaspartate cycle (BHAC) subsequently mediates the carbon-neutral assimilation of glyoxylate into central metabolism in ubiquitous Alpha- and Gammaproteobacteria. Although the reaction sequence of the BHAC was elucidated in Paracoccus denitrificans, little is known about the regulation of glycolate and glyoxylate assimilation in this relevant alphaproteobacterial model organism. Here, we show that regulation of glycolate metabolism in P. denitrificans is surprisingly complex, involving two regulators, the IclR-type transcription factor BhcR that acts as an activator for the BHAC gene cluster, and the GntR-type transcriptional regulator GlcR, a previously unidentified repressor that controls the production of glycolate oxidase. Furthermore, an additional layer of regulation is exerted at the global level, which involves the transcriptional regulator CceR that controls the switch between glycolysis and gluconeogenesis in P. denitrificans. Together, these regulators control glycolate metabolism in P. denitrificans, allowing the organism to assimilate glycolate together with other carbon substrates in a simultaneous fashion, rather than sequentially. Our results show that the metabolic network of Alphaproteobacteria shows a high degree of flexibility to react to the availability of multiple substrates in the environment.IMPORTANCEAlgae perform ca. 50% of the photosynthetic carbon dioxide fixation on our planet. In the process, they release the two-carbon molecule glycolate. Due to the abundance of algae, massive amounts of glycolate are released. Therefore, this molecule is available as a source of carbon for bacteria in the environment. Here, we describe the regulation of glycolate metabolism in the model organism Paracoccus denitrificans. This bacterium uses the recently characterized ß-hydroxyaspartate cycle to assimilate glycolate in a carbon- and energy-efficient manner. We found that glycolate assimilation is dynamically controlled by three different transcriptional regulators: GlcR, BhcR, and CceR. This allows P. denitrificans to assimilate glycolate together with other carbon substrates in a simultaneous fashion. Overall, this flexible and multi-layered regulation of glycolate metabolism in P. denitrificans represents a resource-efficient strategy to make optimal use of this globally abundant molecule under fluctuating environmental conditions.

2.
Commun Biol ; 7(1): 772, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926609

RESUMEN

In bacteria, the availability of environmental inorganic phosphate is typically sensed by the conserved PhoR-PhoB two-component signal transduction pathway, which uses the flux through the PstSCAB phosphate transporter as a readout of the extracellular phosphate level to control phosphate-responsive genes. While the sensing of environmental phosphate is well-investigated, the regulatory effects of cytoplasmic phosphate are unclear. Here, we disentangle the physiological and transcriptional responses of Caulobacter crescentus to changes in the environmental and cytoplasmic phosphate levels by uncoupling phosphate uptake from the activity of the PstSCAB system, using an additional, heterologously produced phosphate transporter. This approach reveals a two-pronged response of C. crescentus to phosphate limitation, in which PhoR-PhoB signaling mostly facilitates the utilization of alternative phosphate sources, whereas the cytoplasmic phosphate level controls the morphological and physiological adaptation of cells to growth under global phosphate limitation. These findings open the door to a comprehensive understanding of phosphate signaling in bacteria.


Asunto(s)
Proteínas Bacterianas , Caulobacter crescentus , Citoplasma , Regulación Bacteriana de la Expresión Génica , Fosfatos , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Caulobacter crescentus/crecimiento & desarrollo , Fosfatos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Citoplasma/metabolismo , Transducción de Señal , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Transporte de Fosfato/genética
3.
Microb Biotechnol ; 16(6): 1203-1231, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37002859

RESUMEN

The vast majority of genomic sequences are automatically annotated using various software programs. The accuracy of these annotations depends heavily on the very few manual annotation efforts that combine verified experimental data with genomic sequences from model organisms. Here, we summarize the updated functional annotation of Bacillus subtilis strain 168, a quarter century after its genome sequence was first made public. Since the last such effort 5 years ago, 1168 genetic functions have been updated, allowing the construction of a new metabolic model of this organism of environmental and industrial interest. The emphasis in this review is on new metabolic insights, the role of metals in metabolism and macromolecule biosynthesis, functions involved in biofilm formation, features controlling cell growth, and finally, protein agents that allow class discrimination, thus allowing maintenance management, and accuracy of all cell processes. New 'genomic objects' and an extensive updated literature review have been included for the sequence, now available at the International Nucleotide Sequence Database Collaboration (INSDC: AccNum AL009126.4).


Asunto(s)
Bacillus subtilis , Genómica , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Genoma Bacteriano
4.
Environ Microbiol ; 24(11): 5306-5331, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36104950

RESUMEN

Ectoine and its derivative hydroxyectoine are widely synthesized or imported by bacteria to fend off the detrimental effects of high osmolarity on cellular hydration and growth. Genes that are connected to a particular physiological process are often found in the same genomic context. We exploited this feature in a comprehensive bioinformatical analysis of 1103 ectoine biosynthetic gene clusters from Bacteria and Archaea through which we identified 415 ect operons that colocalize with genes encoding potential osmolyte transporters. These belong to various importer families. Focusing on the complex ect gene clusters of the alpha-proteobacteria Hyphomonas neptunium and Novoshingobium sp. LH128, we analysed several transporters with respect to their substrate specificities through physiological, molecular and modelling approaches. Accordingly, we identified an MFS-type uptake system specific for ectoines (EctU) and a novel SSS-type ectoine/hydroxyectoine importer (EctI) with a broader substrate profile for osmostress protectants. Furthermore, some ect gene clusters encode a MscS/YbdG-type mechanosensitive channel protein, whose functionality was assessed through down-shock assays. Moreover, our analysis identified the gene for the first putative ectoine/hydroxyectoine-specific efflux system (EctX), a member of the MFS superfamily. Our findings make substantial contributions to the understanding of the ecophysiology of ectoines, key players in microbial osmostress adjustment systems.


Asunto(s)
Aminoácidos Diaminos , Proteínas Bacterianas , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Aminoácidos Diaminos/genética , Aminoácidos Diaminos/metabolismo , Familia de Multigenes , Proteínas de Transporte de Membrana/genética , Archaea/genética , Bacterias/genética
5.
Front Microbiol ; 13: 908304, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783388

RESUMEN

The accumulation of the compatible solute L-proline by Bacillus subtilis via synthesis is a cornerstone in the cell's defense against high salinity as the genetic disruption of this biosynthetic process causes osmotic sensitivity. To understand how B. subtilis could potentially cope with high osmolarity surroundings without the functioning of its natural osmostress adaptive L-proline biosynthetic route (ProJ-ProA-ProH), we isolated suppressor strains of proA mutants under high-salinity growth conditions. These osmostress-tolerant strains carried mutations affecting either the AhrC transcriptional regulator or its operator positioned in front of the argCJBD-carAB-argF L-ornithine/L-citrulline/L-arginine biosynthetic operon. Osmostress protection assays, molecular analysis and targeted metabolomics showed that these mutations, in conjunction with regulatory mutations affecting rocR-rocDEF expression, connect and re-purpose three different physiological processes: (i) the biosynthetic pathway for L-arginine, (ii) the RocD-dependent degradation route for L-ornithine, and (iii) the last step in L-proline biosynthesis. Hence, osmostress adaptation without a functional ProJ-ProA-ProH route is made possible through a naturally existing, but inefficient, metabolic shunt that allows to substitute the enzyme activity of ProA by feeding the RocD-formed metabolite γ-glutamate-semialdehyde/Δ1-pyrroline-5-carboxylate into the biosynthetic route for the compatible solute L-proline. Notably, in one class of mutants, not only substantial L-proline pools but also large pools of L-citrulline were accumulated, a rather uncommon compatible solute in microorganisms. Collectively, our data provide an example of the considerable genetic plasticity and metabolic resourcefulness of B. subtilis to cope with everchanging environmental conditions.

6.
Microb Biotechnol ; 15(9): 2411-2425, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35593133

RESUMEN

Bacillus subtilis, in its natural habitat, is regularly exposed to rapid changes in the osmolarity of its surrounding. As its primary survival strategy, it accumulates large amounts of the compatible solute proline by activating the de novo proline biosynthesis pathway and exploiting the glutamate pools. This osmotically-induced biosynthesis requires activation of a SigA-type promoter that drives the expression of the proHJ operon. Population-wide studies have shown that the activity of the proHJ promoter correlates with the increased osmotic pressure of the environment. Therefore, the activation of the proHJ transcription should be an adequate measure of the adaptation to osmotic stress through proline synthesis in the absence of other osmoprotectants. In this study, we investigate the kinetics of the proHJ promoter activation and the early adaptation to mild osmotic upshift at the single-cell level. Under these conditions, we observed a switching point and heterogeneous proline biosynthesis gene expression, where the subpopulation of cells showing active proHJ transcription is able to continuously divide, and those unresponsive to osmotic stress remain dormant. Additionally, we demonstrate that bactericidal antibiotics significantly upregulate proHJ transcription in the absence of externally imposed osmotic pressure, suggesting that the osmotically-controlled proline biosynthesis pathway is also involved in the antibiotic-mediated stress response.


Asunto(s)
Bacillus subtilis , Prolina , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Regulación Bacteriana de la Expresión Génica , Presión Osmótica , Prolina/genética , Prolina/metabolismo , Prolina/farmacología , Regiones Promotoras Genéticas
7.
Bioessays ; 44(5): e2200009, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35289951

RESUMEN

Biofilms can be viewed as tissue-like structures in which microorganisms are organized in a spatial and functional sophisticated manner. Biofilm formation requires the orchestration of a highly integrated network of regulatory proteins to establish cell differentiation and production of a complex extracellular matrix. Here, we discuss the role of the essential Bacillus subtilis biofilm activator RemA. Despite intense research on biofilms, RemA is a largely underappreciated regulatory protein. RemA forms donut-shaped octamers with the potential to assemble into dimeric superstructures. The presumed DNA-binding mode suggests that RemA organizes its target DNA into nucleosome-like structures, which are the basis for its role as transcriptional activator. We discuss how RemA affects gene expression in the context of biofilm formation, and its regulatory interplay with established components of the biofilm regulatory network, such as SinR, SinI, SlrR, and SlrA. We emphasize the additional role of RemA played in nitrogen metabolism and osmotic-stress adjustment.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Lepidópteros , Animales , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Factores de Transcripción/metabolismo
8.
Environ Microbiol ; 24(3): 1499-1517, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35106888

RESUMEN

Infections by the pathogenic gut bacterium Clostridioides difficile cause severe diarrhoeas up to a toxic megacolon and are currently among the major causes of lethal bacterial infections. Successful bacterial propagation in the gut is strongly associated with the adaptation to changing nutrition-caused environmental conditions; e.g. environmental salt stresses. Concentrations of 350 mM NaCl, the prevailing salinity in the colon, led to significantly reduced growth of C. difficile. Metabolomics of salt-stressed bacteria revealed a major reduction of the central energy generation pathways, including the Stickland-fermentation reactions. No obvious synthesis of compatible solutes was observed up to 24 h of growth. The ensuing limited tolerance to high salinity and absence of compatible solute synthesis might result from an evolutionary adaptation to the exclusive life of C. difficile in the mammalian gut. Addition of the compatible solutes carnitine, glycine-betaine, γ-butyrobetaine, crotonobetaine, homobetaine, proline-betaine and dimethylsulfoniopropionate restored growth (choline and proline failed) under conditions of high salinity. A bioinformatically identified OpuF-type ABC-transporter imported most of the used compatible solutes. A long-term adaptation after 48 h included a shift of the Stickland fermentation-based energy metabolism from the utilization to the accumulation of l-proline and resulted in restored growth. Surprisingly, salt stress resulted in the formation of coccoid C. difficile cells instead of the typical rod-shaped cells, a process reverted by the addition of several compatible solutes. Hence, compatible solute import via OpuF is the major immediate adaptation strategy of C. difficile to high salinity-incurred cellular stress.


Asunto(s)
Clostridioides difficile , Salinidad , Adaptación Fisiológica , Betaína/metabolismo , Prolina/metabolismo
9.
Nat Commun ; 12(1): 5707, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34588455

RESUMEN

Bacillus subtilis can form structurally complex biofilms on solid or liquid surfaces, which requires expression of genes for matrix production. The transcription of these genes is activated by regulatory protein RemA, which binds to poorly conserved, repetitive DNA regions but lacks obvious DNA-binding motifs or domains. Here, we present the structure of the RemA homologue from Geobacillus thermodenitrificans, showing a unique octameric ring with the potential to form a 16-meric superstructure. These results, together with further biochemical and in vivo characterization of B. subtilis RemA, suggests that the protein can wrap DNA around its ring-like structure through a LytTR-related domain.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , ADN Bacteriano/metabolismo , Geobacillus/fisiología , Factores de Transcripción/metabolismo , Bacillus subtilis/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/ultraestructura , Cristalografía por Rayos X , Regulación Bacteriana de la Expresión Génica , Modelos Genéticos , Mutagénesis Sitio-Dirigida , Dominios y Motivos de Interacción de Proteínas/genética , Multimerización de Proteína/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/genética , Factores de Transcripción/aislamiento & purificación , Factores de Transcripción/ultraestructura
10.
Front Microbiol ; 12: 640980, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897645

RESUMEN

The thermotolerant methylotroph Bacillus methanolicus MGA3 was originally isolated from freshwater marsh soil. Due to its ability to use methanol as sole carbon and energy source, B. methanolicus is increasingly explored as a cell factory for the production of amino acids, fine chemicals, and proteins of biotechnological interest. During high cell density fermentation in industrial settings with the membrane-permeable methanol as the feed, the excretion of low molecular weight products synthesized from it will increase the osmotic pressure of the medium. This in turn will impair cell growth and productivity of the overall biotechnological production process. With this in mind, we have analyzed the core of the physiological adjustment process of B. methanolicus MGA3 to sustained high osmolarity surroundings. Through growth assays, we found that B. methanolicus MGA3 possesses only a restricted ability to cope with sustained osmotic stress. This finding is consistent with the ecophysiological conditions in the habitat from which it was originally isolated. None of the externally provided compatible solutes and proline-containing peptides affording osmostress protection for Bacillus subtilis were able to stimulate growth of B. methanolicus MGA3 at high salinity. B. methanolicus MGA3 synthesized the moderately effective compatible solute L-glutamate in a pattern such that the cellular pool increased concomitantly with increases in the external osmolarity. Counterintuitively, a large portion of the newly synthesized L-glutamate was excreted. The expression of the genes (gltAB and gltA2) for two L-glutamate synthases were upregulated in response to high salinity along with that of the gltC regulatory gene. Such a regulatory pattern of the system(s) for L-glutamate synthesis in Bacilli is new. Our findings might thus be generally relevant to understand the production of the osmostress protectant L-glutamate by those Bacilli that exclusively rely on this compatible solute for their physiological adjustment to high osmolarity surroundings.

11.
Front Microbiol ; 12: 764731, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003002

RESUMEN

The compatible solutes ectoine and 5-hydroxyectoine are widely synthesized by bacteria as osmostress protectants. These nitrogen-rich tetrahydropyrimidines can also be exploited as nutrients by microorganisms. Many ectoine/5-hydroxyectoine catabolic gene clusters are associated with a regulatory gene (enuR: ectoine nutrient utilization regulator) encoding a repressor protein belonging to the MocR/GabR sub-family of GntR-type transcription factors. Focusing on EnuR from the marine bacterium Ruegeria pomeroyi, we show that the dimerization of EnuR is mediated by its aminotransferase domain. This domain can fold independently from its amino-terminal DNA reading head and can incorporate pyridoxal-5'-phosphate (PLP) as cofactor. The covalent attachment of PLP to residue Lys302 of EnuR was proven by mass-spectrometry. PLP interacts with system-specific, ectoine and 5-hydroxyectoine-derived inducers: alpha-acetyldiaminobutyric acid (alpha-ADABA), and hydroxy-alpha-acetyldiaminobutyric acid (hydroxy-alpha-ADABA), respectively. These inducers are generated in cells actively growing with ectoines as sole carbon and nitrogen sources, by the EutD hydrolase and targeted metabolic analysis allowed their detection. EnuR binds these effector molecules with affinities in the low micro-molar range. Studies addressing the evolutionary conservation of EnuR, modelling of the EnuR structure, and docking experiments with the inducers provide an initial view into the cofactor and effector binding cavity. In this cavity, the two high-affinity inducers for EnuR, alpha-ADABA and hydroxy-alpha-ADABA, are positioned such that their respective primary nitrogen group can chemically interact with PLP. Purified EnuR bound with micro-molar affinity to a 48 base pair DNA fragment containing the sigma-70 type substrate-inducible promoter for the ectoine/5-hydroxyectoine importer and catabolic gene cluster. Consistent with the function of EnuR as a repressor, the core elements of the promoter overlap with two predicted EnuR operators. Our data lend themselves to a straightforward regulatory model for the initial encounter of EnuR-possessing ectoine/5-hydroxyectoine consumers with environmental ectoines and for the situation when the external supply of these compounds has been exhausted by catabolism.

13.
Front Microbiol ; 11: 1700, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849357

RESUMEN

Bacillus subtilis adjusts to high osmolarity surroundings through the amassing of compatible solutes. It synthesizes the compatible solute glycine betaine from prior imported choline and scavenges many pre-formed osmostress protectants, including glycine betaine, from environmental sources. Choline is imported through the substrate-restricted ABC transporter OpuB and the closely related, but promiscuous, OpuC system, followed by its GbsAB-mediated oxidation to glycine betaine. We have investigated the impact of two MarR-type regulators, GbsR and OpcR, on gbsAB, opuB, and opuC expression. Judging by the position of the previously identified OpcR operator in the regulatory regions of opuB and opuC [Lee et al. (2013) Microbiology 159, 2087-2096], and that of the GbsR operator identified in the current study, we found that the closely related GbsR and OpcR repressors use different molecular mechanisms to control transcription. OpcR functions by sterically hindering access of RNA-polymerase to the opuB and opuC promoters, while GbsR operates through a roadblock mechanism to control gbsAB and opuB transcription. Loss of GbsR or OpcR de-represses opuB and opuC transcription, respectively. With respect to the osmotic control of opuB and opuC expression, we found that this environmental cue operates independently of the OpcR and GbsR regulators. When assessed over a wide range of salinities, opuB and opuC exhibit a surprisingly different transcriptional profile. Expression of opuB increases monotonously in response to incrementally increase in salinity, while opuC transcription levels decrease after an initial up-regulation at moderate salinities. Transcription of the gbsR and opcR regulatory genes is up-regulated in response to salt stress, and is also affected through auto-regulatory processes. The opuB and opuC operons have evolved through a gene duplication event. However, evolution has shaped their mode of genetic regulation, their osmotic-stress dependent transcriptional profile, and the substrate specificity of the OpuB and OpuC ABC transporters in a distinctive fashion.

14.
Biol Chem ; 401(12): 1443-1468, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-32755967

RESUMEN

Ectoine and its derivative 5-hydroxyectoine are compatible solutes and chemical chaperones widely synthesized by Bacteria and some Archaea as cytoprotectants during osmotic stress and high- or low-growth temperature extremes. The function-preserving attributes of ectoines led to numerous biotechnological and biomedical applications and fostered the development of an industrial scale production process. Synthesis of ectoines requires the expenditure of considerable energetic and biosynthetic resources. Hence, microorganisms have developed ways to exploit ectoines as nutrients when they are no longer needed as stress protectants. Here, we summarize our current knowledge on the phylogenomic distribution of ectoine producing and consuming microorganisms. We emphasize the structural enzymology of the pathways underlying ectoine biosynthesis and consumption, an understanding that has been achieved only recently. The synthesis and degradation pathways critically differ in the isomeric form of the key metabolite N-acetyldiaminobutyric acid (ADABA). γ-ADABA serves as preferred substrate for the ectoine synthase, while the α-ADABA isomer is produced by the ectoine hydrolase as an intermediate in catabolism. It can serve as internal inducer for the genetic control of ectoine catabolic genes via the GabR/MocR-type regulator EnuR. Our review highlights the importance of structural enzymology to inspire the mechanistic understanding of metabolic networks at the biological scale.


Asunto(s)
Aminoácidos Diaminos/metabolismo , Bacterias/metabolismo , Hidroliasas/metabolismo , Chaperonas Moleculares/metabolismo , Nutrientes/metabolismo , Aminoácidos Diaminos/química , Hidroliasas/química , Chaperonas Moleculares/química , Estructura Molecular , Nutrientes/química , Presión Osmótica
15.
J Biol Chem ; 295(27): 9087-9104, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32404365

RESUMEN

When faced with increased osmolarity in the environment, many bacterial cells accumulate the compatible solute ectoine and its derivative 5-hydroxyectoine. Both compounds are not only potent osmostress protectants, but also serve as effective chemical chaperones stabilizing protein functionality. Ectoines are energy-rich nitrogen and carbon sources that have an ecological impact that shapes microbial communities. Although the biochemistry of ectoine and 5-hydroxyectoine biosynthesis is well understood, our understanding of their catabolism is only rudimentary. Here, we combined biochemical and structural approaches to unravel the core of ectoine and 5-hydroxy-ectoine catabolisms. We show that a conserved enzyme bimodule consisting of the EutD ectoine/5-hydroxyectoine hydrolase and the EutE deacetylase degrades both ectoines. We determined the high-resolution crystal structures of both enzymes, derived from the salt-tolerant bacteria Ruegeria pomeroyi and Halomonas elongata These structures, either in their apo-forms or in forms capturing substrates or intermediates, provided detailed insights into the catalytic cores of the EutD and EutE enzymes. The combined biochemical and structural results indicate that the EutD homodimer opens the pyrimidine ring of ectoine through an unusual covalent intermediate, N-α-2 acetyl-l-2,4-diaminobutyrate (α-ADABA). We found that α-ADABA is then deacetylated by the zinc-dependent EutE monomer into diaminobutyric acid (DABA), which is further catabolized to l-aspartate. We observed that the EutD-EutE bimodule synthesizes exclusively the α-, but not the γ-isomers of ADABA or hydroxy-ADABA. Of note, α-ADABA is known to induce the MocR/GabR-type repressor EnuR, which controls the expression of many ectoine catabolic genes clusters. We conclude that hydroxy-α-ADABA might serve a similar function.


Asunto(s)
Aminoácidos Diaminos/metabolismo , Osmorregulación/fisiología , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Regulación Bacteriana de la Expresión Génica/genética , Halomonas/metabolismo , Histona Desacetilasas/metabolismo , Histona Desacetilasas/ultraestructura , Hidrolasas/metabolismo , Hidrolasas/ultraestructura , Chaperonas Moleculares/metabolismo , Familia de Multigenes , Rhodobacteraceae/metabolismo
16.
Front Microbiol ; 11: 622, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32373088

RESUMEN

Under hyperosmotic conditions, bacteria accumulate compatible solutes through synthesis or import. Bacillus subtilis imports a large set of osmostress protectants via five osmotically controlled transport systems (OpuA to OpuE). Biosynthesis of the particularly effective osmoprotectant glycine betaine requires the exogenous supply of choline. While OpuB is rather specific for choline, OpuC imports a broad spectrum of compatible solutes, including choline and glycine betaine. One previously mapped antisense RNA of B. subtilis, S1290, exhibits strong and transient expression in response to a suddenly imposed salt stress. It covers the coding region of the opuB operon and is expressed from a strictly SigB-dependent promoter. By inactivation of this promoter and analysis of opuB and opuC transcript levels, we discovered a time-delayed osmotic induction of opuB that crucially depends on the S1290 antisense RNA and on the degree of the imposed osmotic stress. Time-delayed osmotic induction of opuB is apparently caused by transcriptional interference of RNA-polymerase complexes driving synthesis of the converging opuB and S1290 mRNAs. When our data are viewed in an ecophysiological framework, it appears that during the early adjustment phase of B. subtilis to acute osmotic stress, the cell prefers to initially rely on the transport activity of the promiscuous OpuC system and only subsequently fully induces opuB. Our data also reveal an integration of osmostress-specific adjustment systems with the SigB-controlled general stress response at a deeper level than previously appreciated.

17.
Environ Microbiol ; 22(8): 3266-3286, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32419322

RESUMEN

The Gram-positive bacterium Bacillus subtilis is frequently exposed to hyperosmotic conditions. In addition to the induction of genes involved in the accumulation of compatible solutes, high salinity exerts widespread effects on B. subtilis physiology, including changes in cell wall metabolism, induction of an iron limitation response, reduced motility and suppression of sporulation. We performed a combined whole-transcriptome and proteome analysis of B. subtilis 168 cells continuously cultivated at low or high (1.2 M NaCl) salinity. Our study revealed significant changes in the expression of more than one-fourth of the protein-coding genes and of numerous non-coding RNAs. New aspects in understanding the impact of high salinity on B. subtilis include a sustained low-level induction of the SigB-dependent general stress response and strong repression of biofilm formation under high-salinity conditions. The accumulation of compatible solutes such as glycine betaine aids the cells to cope with water stress by maintaining physiologically adequate levels of turgor and also affects multiple cellular processes through interactions with cellular components. Therefore, we additionally analysed the global effects of glycine betaine on the transcriptome and proteome of B. subtilis and revealed that it influences gene expression not only under high-salinity, but also under standard growth conditions.


Asunto(s)
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Betaína/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Proteoma , Salinidad , Cloruro de Sodio/farmacología
18.
J Biol Chem ; 295(9): 2822-2838, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31969391

RESUMEN

Ectoine is a solute compatible with the physiologies of both prokaryotic and eukaryotic cells and is widely synthesized by bacteria as an osmotic stress protectant. Because it preserves functional attributes of proteins and macromolecular complexes, it is considered a chemical chaperone and has found numerous practical applications. However, the mechanism of its biosynthesis is incompletely understood. The second step in ectoine biosynthesis is catalyzed by l-2,4-diaminobutyrate acetyltransferase (EctA; EC 2.3.1.178), which transfers the acetyl group from acetyl-CoA to EctB-formed l-2,4-diaminobutyrate (DAB), yielding N-γ-acetyl-l-2,4-diaminobutyrate (N-γ-ADABA), the substrate of ectoine synthase (EctC). Here, we report the biochemical and structural characterization of the EctA enzyme from the thermotolerant bacterium Paenibacillus lautus (Pl). We found that (Pl)EctA forms a homodimer whose enzyme activity is highly regiospecific by producing N-γ-ADABA but not the ectoine catabolic intermediate N-α-acetyl-l-2,4-diaminobutyric acid. High-resolution crystal structures of (Pl)EctA (at 1.2-2.2 Å resolution) (i) for its apo-form, (ii) in complex with CoA, (iii) in complex with DAB, (iv) in complex with both CoA and DAB, and (v) in the presence of the product N-γ-ADABA were obtained. To pinpoint residues involved in DAB binding, we probed the structure-function relationship of (Pl)EctA by site-directed mutagenesis. Phylogenomics shows that EctA-type proteins from both Bacteria and Archaea are evolutionarily highly conserved, including catalytically important residues. Collectively, our biochemical and structural findings yielded detailed insights into the catalytic core of the EctA enzyme that laid the foundation for unraveling its reaction mechanism.


Asunto(s)
Acetiltransferasas/química , Aminoácidos Diaminos/biosíntesis , Proteínas Bacterianas/química , Dominio Catalítico , Paenibacillus/química , Cristalografía por Rayos X , Dimerización , Mutagénesis Sitio-Dirigida , Relación Estructura-Actividad
19.
Front Microbiol ; 10: 2745, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31827466

RESUMEN

Extant enzymes are not only highly efficient biocatalysts for a single, or a group of chemically closely related substrates but often have retained, as a mark of their evolutionary history, a certain degree of substrate ambiguity. We have exploited the substrate ambiguity of the ectoine hydroxylase (EctD), a member of the non-heme Fe(II)-containing and 2-oxoglutarate-dependent dioxygenase superfamily, for such a task. Naturally, the EctD enzyme performs a precise regio- and stereoselective hydroxylation of the ubiquitous stress protectant and chemical chaperone ectoine (possessing a six-membered pyrimidine ring structure) to yield trans-5-hydroxyectoine. Using a synthetic ectoine derivative, homoectoine, which possesses an expanded seven-membered diazepine ring structure, we were able to selectively generate, both in vitro and in vivo, trans-5-hydroxyhomoectoine. For this transformation, we specifically used the EctD enzyme from Pseudomonas stutzeri in a whole cell biocatalyst approach, as this enzyme exhibits high catalytic efficiency not only for its natural substrate ectoine but also for homoectoine. Molecular docking approaches with the crystal structure of the Sphingopyxis alaskensis EctD protein predicted the formation of trans-5-hydroxyhomoectoine, a stereochemical configuration that we experimentally verified by nuclear-magnetic resonance spectroscopy. An Escherichia coli cell factory expressing the P. stutzeri ectD gene from a synthetic promoter imported homoectoine via the ProU and ProP compatible solute transporters, hydroxylated it, and secreted the formed trans-5-hydroxyhomoectoine, independent from all currently known mechanosensitive channels, into the growth medium from which it could be purified by high-pressure liquid chromatography.

20.
Nature ; 575(7783): 500-504, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31723261

RESUMEN

One of the most abundant sources of organic carbon in the ocean is glycolate, the secretion of which by marine phytoplankton results in an estimated annual flux of one petagram of glycolate in marine environments1. Although it is generally accepted that glycolate is oxidized to glyoxylate by marine bacteria2-4, the further fate of this C2 metabolite is not well understood. Here we show that ubiquitous marine Proteobacteria are able to assimilate glyoxylate via the ß-hydroxyaspartate cycle (BHAC) that was originally proposed 56 years ago5. We elucidate the biochemistry of the BHAC and describe the structure of its key enzymes, including a previously unknown primary imine reductase. Overall, the BHAC enables the direct production of oxaloacetate from glyoxylate through only four enzymatic steps, representing-to our knowledge-the most efficient glyoxylate assimilation route described to date. Analysis of marine metagenomes shows that the BHAC is globally distributed and on average 20-fold more abundant than the glycerate pathway, the only other known pathway for net glyoxylate assimilation. In a field study of a phytoplankton bloom, we show that glycolate is present in high nanomolar concentrations and taken up by prokaryotes at rates that allow a full turnover of the glycolate pool within one week. During the bloom, genes that encode BHAC key enzymes are present in up to 1.5% of the bacterial community and actively transcribed, supporting the role of the BHAC in glycolate assimilation and suggesting a previously undescribed trophic interaction between autotrophic phytoplankton and heterotrophic bacterioplankton.


Asunto(s)
Organismos Acuáticos/metabolismo , Ácido Aspártico/análogos & derivados , Glicolatos/metabolismo , Redes y Vías Metabólicas , Proteobacteria/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Aldehído-Liasas/metabolismo , Organismos Acuáticos/enzimología , Ácido Aspártico/metabolismo , Biocatálisis , Glioxilatos/metabolismo , Hidroliasas/metabolismo , Cinética , Oxidorreductasas/metabolismo , Fitoplancton/enzimología , Fitoplancton/metabolismo , Proteobacteria/enzimología , Transaminasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...