Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 32(37): 12973-8, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22973021

RESUMEN

Excitotoxic neuronal death is mediated in part by NMDA receptor-induced activation of NOX2, an enzyme that produces superoxide and resultant oxidative stress. It is not known, however, whether the superoxide is generated in the intracellular space, producing oxidative stress in the neurons responding to NMDA receptor activation, or in the extracellular space, producing oxidative stress in neighboring cells. We evaluated these alternatives by preparing cortical neuron cultures from p47(phox-/-) mice, which are unable to form a functional NOX2 complex, and transfecting the cultures at low density with GFP-tagged p47(phox) to reconstitute NOX2 activity in widely scattered neurons. NMDA exposure did not induce oxidative stress or cell death in the nontransfected, p47-phox(-/-) cultures, but did produce oxidative stress and neuronal death in neurons surrounding the transfected, NOX2-competent neurons. This cell-to-cell spread of NMDA-induced oxidative injury was blocked by coincubation with either superoxide dismutase or the anion channel blocker 4'-diisothiocyanostilbene-2,2'-disulphonate, confirming superoxide anion as the mediating oxidant. In neurons plated on a preexisting astrocyte layer, NMDA induced oxidative stress in both the neurons and the astrocytes, and this was also prevented by superoxide dismutase. These findings show that activation of NMDA receptors on one neuron can lead to oxidative stress and cell death in neighboring neurons and astrocytes by a process involving the extracellular release of superoxide by NOX2.


Asunto(s)
Astrocitos/metabolismo , Glicoproteínas de Membrana/metabolismo , NADPH Oxidasas/metabolismo , Neuronas/fisiología , Estrés Oxidativo/fisiología , Superóxidos/metabolismo , Animales , Células Cultivadas , Ratones , Ratones Noqueados , NADPH Oxidasa 2 , Receptores de N-Metil-D-Aspartato
2.
Ann Neurol ; 69(3): 509-20, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21446024

RESUMEN

OBJECTIVE: Dopaminergic neuronal death in Parkinson's disease (PD) is accompanied by oxidative stress and preceded by glutathione depletion. The development of disease-modifying therapies for PD has been hindered by a paucity of animal models that mimic these features and demonstrate an age-related progression. The EAAC1(-/-) mouse may be useful in this regard, because EAAC1(-/-) mouse neurons have impaired neuronal cysteine uptake, resulting in reduced neuronal glutathione content and chronic oxidative stress. Here we aimed to (1) characterize the age-related changes in nigral dopaminergic neurons in the EAAC1(-/-) mouse, and (2) use the EAAC1(-/-) mouse to evaluate N-acetylcysteine, a membrane-permeable cysteine pro-drug, as a potential disease-modifying intervention for PD. METHODS: Wild-type mice, EAAC1(-/-) mice, and EAAC1(-/-) mice chronically treated with N-acetylcysteine were evaluated at serial time points for evidence of oxidative stress, dopaminergic cell death, and motor abnormalities. RESULTS: EAAC1(-/-) mice showed age-dependent loss of dopaminergic neurons in the substantia nigra pars compacta, with more than 40% of these neurons lost by age 12 months. This neuronal loss was accompanied by increased nitrotyrosine formation, nitrosylated α-synuclein, and microglial activation. These changes were substantially reduced in mice that received N-acetylcysteine. INTERPRETATION: These findings suggest that the EAAC1(-/-) mouse may be a useful model of the chronic neuronal oxidative stress that occurs in PD. The salutary effects of N-acetylcysteine in this mouse model provide an impetus for clinical evaluation of glutathione repletion in PD.


Asunto(s)
Acetilcisteína/farmacología , Dopamina/metabolismo , Transportador 3 de Aminoácidos Excitadores/metabolismo , Neuronas/efectos de los fármacos , Enfermedad de Parkinson/metabolismo , Sustancia Negra/efectos de los fármacos , Factores de Edad , Anciano , Análisis de Varianza , Animales , Western Blotting , Recuento de Células , Muerte Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Transportador 3 de Aminoácidos Excitadores/genética , Humanos , Inmunohistoquímica , Ratones , Ratones Noqueados , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Actividad Motora/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson/patología , Sustancia Negra/metabolismo , Sustancia Negra/patología , Tirosina 3-Monooxigenasa/metabolismo
3.
J Neurosci ; 30(46): 15409-18, 2010 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-21084597

RESUMEN

EAAC1 is a neuronal glutamate and cysteine transporter. EAAC1 uptake of cysteine provides substrate for neuronal glutathione synthesis, which plays a key role in both antioxidant defenses and intracellular zinc binding. Here we evaluated the role of EAAC1 in neuronal resistance to ischemia. EAAC1(-/-) mice subjected to transient cerebral ischemia exhibited twice as much hippocampal neuronal death as wild-type mice and a corresponding increase in microglial activation. EAAC1(-/-) mice also had elevated vesicular and cytosolic zinc concentrations in hippocampal CA1 neurons and an increased zinc translocation to postsynaptic neurons after ischemia. Treatment of the EAAC1(-/-) mice with N-acetyl cysteine restored neuronal glutathione concentrations and normalized basal zinc levels in the EAAC1(-/-) mice. Treatment of the EAAC1(-/-) mice with either N-acetyl cysteine or with zinc chelators reduced ischemia-induced zinc translocation, superoxide production, and neuron death. These findings suggest that cysteine uptake by EAAC1 is important for zinc homeostasis and neuronal antioxidant function under ischemic conditions.


Asunto(s)
Progresión de la Enfermedad , Transportador 3 de Aminoácidos Excitadores/genética , Eliminación de Gen , Homeostasis/genética , Ataque Isquémico Transitorio/genética , Ataque Isquémico Transitorio/patología , Neuronas/patología , Zinc/fisiología , Acetilcisteína/metabolismo , Animales , Transportador 3 de Aminoácidos Excitadores/deficiencia , Ataque Isquémico Transitorio/metabolismo , Masculino , Ratones , Ratones Transgénicos
4.
Nat Neurosci ; 12(7): 857-63, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19503084

RESUMEN

Neuronal NMDA receptor (NMDAR) activation leads to the formation of superoxide, which normally acts in cell signaling. With extensive NMDAR activation, the resulting superoxide production leads to neuronal death. It is widely held that NMDA-induced superoxide production originates from the mitochondria, but definitive evidence for this is lacking. We evaluated the role of the cytoplasmic enzyme NADPH oxidase in NMDA-induced superoxide production. Neurons in culture and in mouse hippocampus responded to NMDA with a rapid increase in superoxide production, followed by neuronal death. These events were blocked by the NADPH oxidase inhibitor apocynin and in neurons lacking the p47(phox) subunit, which is required for NADPH oxidase assembly. Superoxide production was also blocked by inhibiting the hexose monophosphate shunt, which regenerates the NADPH substrate, and by inhibiting protein kinase C zeta, which activates the NADPH oxidase complex. These findings identify NADPH oxidase as the primary source of NMDA-induced superoxide production.


Asunto(s)
NADPH Oxidasas/metabolismo , Neuronas/enzimología , Receptores de N-Metil-D-Aspartato/metabolismo , Superóxidos/metabolismo , Acetofenonas/farmacología , Animales , Muerte Celular/fisiología , Células Cultivadas , Dendritas/enzimología , Dendritas/metabolismo , Inhibidores Enzimáticos/farmacología , Hipocampo/enzimología , Hipocampo/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/enzimología , Mitocondrias/metabolismo , NADPH Oxidasas/antagonistas & inhibidores , NADPH Oxidasas/genética , Neuronas/metabolismo , Vía de Pentosa Fosfato/fisiología , Proteína Quinasa C/metabolismo , Células Piramidales/enzimología , Células Piramidales/metabolismo
5.
Ann Neurol ; 64(6): 654-63, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19107988

RESUMEN

OBJECTIVE: Hyperglycemia has been recognized for decades to be an exacerbating factor in ischemic stroke, but the mechanism of this effect remains unresolved. Here, we evaluated superoxide production by neuronal nicotinamide adenine dinucleotide phosphate (NADPH) oxidase as a possible link between glucose metabolism and neuronal death in ischemia-reperfusion. METHODS: Superoxide production was measured by the ethidium method in cultured neurons treated with oxygen-glucose deprivation and in mice treated with forebrain ischemia-reperfusion. The role of NADPH oxidase was examined using genetic disruption of its p47(phox) subunit and with the pharmacological inhibitor apocynin. RESULTS: In neuron cultures, postischemic superoxide production and cell death were completely prevented by removing glucose from the medium, by inactivating NADPH oxidase, or by inhibiting the hexose monophosphate shunt that generates NADPH from glucose. In murine stroke, neuronal superoxide production and death were decreased by the glucose antimetabolite 2-deoxyglucose and increased by high blood glucose concentrations. Inactivating NADPH oxidase with either apocynin or deletion of the p47(phox) subunit blocked neuronal superoxide production and negated the deleterious effects of hyperglycemia. INTERPRETATION: These findings identify glucose as the requisite electron donor for reperfusion-induced neuronal superoxide production and establish a previously unrecognized mechanism by which hyperglycemia can exacerbate ischemic brain injury.


Asunto(s)
Glucosa/fisiología , Neuronas/metabolismo , Accidente Cerebrovascular/metabolismo , Superóxidos/metabolismo , Animales , Muerte Celular/fisiología , Células Cultivadas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas/enzimología , Neuronas/patología , Accidente Cerebrovascular/enzimología , Accidente Cerebrovascular/patología
6.
J Cereb Blood Flow Metab ; 26(11): 1389-406, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16538234

RESUMEN

Excitatory stimulation in hippocampal slices results in biphasic NAD(P)H fluorescence transients. Previous studies using differing stimulus protocols agreed that the oxidation phase is a consequence of mitochondrial metabolism, but the reduction phase has been attributed to (1) mitochondrial nicotinamide adenine dinucleotide (NADH) generation or (2) astrocytic glycolysis triggered by glutamate uptake. In an attempt to reconcile these two views, the present study examined NAD(P)H signals evoked by a wide range of stimulus durations (40 ms to 20 secs). A combination of ionotropic glutamate receptor (iGluR) antagonists (6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), 2-amino-5-phosphonopentanoic acid (APV)) virtually abolished responses to brief stimuli (40 to 200 ms, 50 Hz), but a significant fraction of the signal elicited by extended stimulation (20 secs, 32 Hz) was resistant to CNQX/APV. Glycolysis was inhibited by removal of glucose and addition of 2-deoxyglucose (2DG) (10 mmol/L) or iodoacetic acid (IAA, 1 mmol/L). Pyruvate was provided as an alternative substrate for oxidative phosphorylation and the A1 receptor antagonist 1,3-Dipropyl-8-cyclopentylxanthine (DPCPX) included to prevent decreases in synaptic efficacy. If sufficient pyruvate was supplied, responses to brief and extended stimuli were unaffected by glycolytic inhibition and not significantly reduced by an inhibitor of glucose uptake (3-O-methyl glucose, 3 mmol/L). When timed to arrive at the peak of overshoots generated by extended synaptic stimulation, brief pyruvate applications (10 mmol/L, 2 mins) had little effect on evoked NAD(P)H increases. Flavoprotein autofluorescence transients after extended stimuli matched (with inverted sign) NAD(P)H responses. Responses to extended stimuli were not reduced by a nonselective inhibitor of glutamate uptake DL-Threo-beta-benzyloxyaspartic acid (TBOA). These results suggest that NAD(P)H transients report mitochondrial dynamics, rather than recruitment of glycolytic metabolism, over a wide range of stimulus intensities.


Asunto(s)
Encéfalo/fisiología , Mitocondrias/fisiología , NADP/metabolismo , Sinapsis/fisiología , 2-Amino-5-fosfonovalerato/farmacología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Bicuculina/farmacología , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/fisiología , Flavoproteínas/metabolismo , Fluorescencia , Antagonistas del GABA/farmacología , Ácido Glutámico/metabolismo , Glucólisis/efectos de los fármacos , Glucólisis/fisiología , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuroglía/fisiología , Neuronas/fisiología , Piruvatos/metabolismo
7.
J Neurosci ; 23(8): 3196-208, 2003 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-12716927

RESUMEN

We examined mechanisms contributing to stimulus-evoked changes in NAD(P)H fluorescence as a marker of neuronal activation in area CA1 of murine hippocampal slices. Three types of stimuli (electrical, glutamate iontophoresis, bath-applied kainate) produced biphasic fluorescence changes composed of an initial transient decrease ("initial component," 1-3%), followed by a longer-lasting transient increase ("overshoot," 3-8%). These responses were matched by inverted biphasic flavin adenine dinucleotide (FAD) fluorescence transients, suggesting that these transients reflect mitochondrial function rather than optical artifacts. Both components of NAD(P)H transients were abolished by ionotropic glutamate receptor block, implicating postsynaptic neuronal activation as the primary event involved in generating the signals, and not presynaptic activity or reuptake of synaptically released glutamate. Spatial analysis of the evoked signals indicated that the peak of each component could arise in different locations in the slice, suggesting that there is not always obligatory coupling between the two components. The initial NAD(P)H response showed a strong temporal correspondence to intracellular Ca+ increases and mitochondrial depolarization. However, despite the fact that removal of extracellular Ca2+ abolished neuronal cytosolic Ca2+ transients to exogenous glutamate or kainate, this procedure did not reduce slice NAD(P)H responses evoked by either of these agonists, implying that mechanisms other than neuronal mitochondrial Ca2+ loading underlie slice NAD(P)H transients. These data show that, in contrast to previous proposals, slice NAD(P)H transients in mature slices do not reflect neuronal Ca2+ dynamics and demonstrate that these signals are sensitive indicators of both the spatial and temporal characteristics of postsynaptic neuronal activation in these preparations.


Asunto(s)
Hipocampo/metabolismo , NADP/metabolismo , NAD/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Animales , Calcio/metabolismo , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/fisiología , Flavina-Adenina Dinucleótido/metabolismo , Fluorescencia , Colorantes Fluorescentes , Ácido Glutámico/farmacología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Técnicas In Vitro , Iontoforesis , Ácido Kaínico/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Neuronas/efectos de los fármacos , Óptica y Fotónica , Estimulación Química , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...