Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 13(19): 5539-5545, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35694350

RESUMEN

Despite its essential role in the (patho)physiology of several diseases, CB2R tissue expression profiles and signaling mechanisms are not yet fully understood. We report the development of a highly potent, fluorescent CB2R agonist probe employing structure-based reverse design. It commences with a highly potent, preclinically validated ligand, which is conjugated to a silicon-rhodamine fluorophore, enabling cell permeability. The probe is the first to preserve interspecies affinity and selectivity for both mouse and human CB2R. Extensive cross-validation (FACS, TR-FRET and confocal microscopy) set the stage for CB2R detection in endogenously expressing living cells along with zebrafish larvae. Together, these findings will benefit clinical translatability of CB2R based drugs.

2.
Pharm Pat Anal ; 10(3): 111-163, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34111979

RESUMEN

The G-protein-coupled cannabinoid receptor type 2 (CB2R) is a key element of the endocannabinoid (EC) system. EC/CB2R signaling has significant therapeutic potential in major pathologies affecting humans such as allergies, neurodegenerative disorders, inflammation or ocular diseases. CB2R agonism exerts anti-inflammatory and tissue protective effects in preclinical animal models of cardiovascular, gastrointestinal, liver, kidney, lung and neurodegenerative disorders. Existing ligands can be subdivided into endocannabinoids, cannabinoid-like and synthetic CB2R ligands that possess various degrees of potency on and selectivity against the cannabinoid receptor type 1. This review is an account of granted CB2R ligand patents from 2010 up to the present, which were surveyed using Derwent Innovation®.


Asunto(s)
Antiinflamatorios , Endocannabinoides , Animales , Humanos , Ligandos , Patentes como Asunto , Receptores de Cannabinoides , Transducción de Señal
3.
Bioconjug Chem ; 32(4): 702-712, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33691062

RESUMEN

The utilization of an activatable, substrate-based probe design in combination with a cellular targeting approach has been rarely explored for cancer imaging on a small-molecule basis, although such probes could benefit from advantages of both concepts. Cysteine proteases like cathepsin S are known to be involved in fundamental processes associated with tumor development and progression and thus are valuable cancer markers. We report the development of a combined dual functional DOTAM-based, RGD-targeted internally quenched fluorescent probe that is activated by cathepsin S. The probe exhibits excellent in vitro activation kinetics which can be fully translated to human cancer cell lines. We demonstrate that the targeted, activatable probe is superior to its nontargeted analog, exhibiting improved uptake into ανß3-integrin expressing human sarcoma cells (HT1080) and significantly higher resultant fluorescence staining. However, profound activation was also found in cancer cells with a lower integrin expression level, whereas in healthy cells almost no probe activation could be observed, highlighting the high selectivity of our probe toward cancer cells. These auspicious results show the outstanding potential of the dual functionality concept combining a substrate-based probe design with a targeting approach, which could form the basis for highly sensitive and selective in vivo imaging probes.


Asunto(s)
Colorantes Fluorescentes/química , Neoplasias/diagnóstico , Línea Celular Tumoral , Humanos , Neoplasias/patología , Imagen Óptica/métodos , Sensibilidad y Especificidad
4.
J Am Chem Soc ; 142(40): 16953-16964, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32902974

RESUMEN

Pharmacological modulation of cannabinoid type 2 receptor (CB2R) holds promise for the treatment of numerous conditions, including inflammatory diseases, autoimmune disorders, pain, and cancer. Despite the significance of this receptor, researchers lack reliable tools to address questions concerning the expression and complex mechanism of CB2R signaling, especially in cell-type and tissue-dependent contexts. Herein, we report for the first time a versatile ligand platform for the modular design of a collection of highly specific CB2R fluorescent probes, used successfully across applications, species, and cell types. These include flow cytometry of endogenously expressing cells, real-time confocal microscopy of mouse splenocytes and human macrophages, as well as FRET-based kinetic and equilibrium binding assays. High CB2R specificity was demonstrated by competition experiments in living cells expressing CB2R at native levels. The probes were effectively applied to FACS analysis of microglial cells derived from a mouse model relevant to Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Colorantes Fluorescentes/química , Microglía/metabolismo , Receptor Cannabinoide CB2/análisis , Animales , Células CHO , Cricetulus , Modelos Animales de Enfermedad , Citometría de Flujo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Ligandos , Ratones , Simulación del Acoplamiento Molecular , Sondas Moleculares/química , Imagen Óptica , Sensibilidad y Especificidad , Transducción de Señal
5.
Angew Chem Int Ed Engl ; 59(22): 8512-8516, 2020 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-32212410

RESUMEN

Herein we report the development of a turn-on lanthanide luminescent probe for time-gated detection of nitroreductases (NTRs) in live bacteria. The probe is activated through NTR-induced formation of the sensitizing carbostyril antenna and resulting energy transfer to the lanthanide center. This novel NTR-responsive trigger is virtually non-fluorescent in its inactivated form and features a large signal increase upon activation. We show that the probe is capable of selectively sensing NTR in lysates as well as in live bacteria of the ESKAPE family which are clinically highly relevant multiresistant pathogens responsible for the majority of hospital infections. The results suggest that our probe could be used to develop diagnostic tools for bacterial infections.


Asunto(s)
Bacterias/enzimología , Elementos de la Serie de los Lantanoides/química , Sustancias Luminiscentes/química , Nitrorreductasas/química , Nitrorreductasas/metabolismo , Viabilidad Microbiana , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...