Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chromatogr A ; 1731: 465154, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39053251

RESUMEN

The identification of archaeological biomarkers is one of the main objectives of analytical chemistry in the archaeological field. However, no information is currently available on biomarkers able to unambiguously indicate the presence of olive oil, a cornerstone of Mediterranean ancient societies lifestyle, in an organic residue. This study aims to bridge this gap by a thorough characterization of the degradation products of extra-virgin olive oils (EVOOs) resulting from in-lab thermal oxidative treatments, with the primary goal of revealing potential archaeological biomarkers for olive oil. Thirty-three EVOOs sourced from eleven different monocultivars across five Italian regions (Sicily, Apulia, Lazio, Tuscany, and Liguria) and Spain, were analyzed before and after thermal oxidation. In addition, an identical thermal treatment was employed on pure triglyceride standards (triolein, trilinolein, and tristearin), due to the high concentration of their fatty acids in EVOO discerning their degradation patterns. A combination of analytical strategies was employed, including HPLC-MS and HPLC-ELSD for the complete evaluation of the intact lipids (triglycerides, diglycerides, and their oxidative species) in olive oils before and after oxidation, and HS-SPME-GC-MS and GC-FID for the characterization of secondary oxidation products formed by the thermal treatment. In addition, to elucidate the fatty acid distribution in the oxidized EVOOs by GC-MS and GC-FID techniques a derivatization step was performed to convert lipid compounds into trimethylsilyl (TMS) derivatives. A chemometric approach was used to thoroughly interpret the data obtained from intact and oxidized samples. This comprehensive investigation sheds light on the chemical transformations of EVOOs under thermal oxidative conditions and indicates mono-carboxylic acids such as pentanoic, hexanoic, heptanoic, octanoic, nonanoic, and decanoic acids as potential archaeological biomarkers for the presence of lipid substances coming from olive oil in archaeological organic residues. Finally, lipid contents from twenty-four real archaeological samples, grouped in amphorae (10), unguentaria (5), and lamps (9), excavated from the Roman domus of Villa San Pancrazio in Taormina (Italy), were determined. The analytical results obtained from amphorae samples revealed the presence of the selected olive oil-specific archaeological biomarkers, an information extremely interesting considering that this type of amphorae have so far been solely associated with the storage of wine.

2.
Ecotoxicol Environ Saf ; 272: 116027, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38295733

RESUMEN

Deferiprone, generally, is considered an important chelating agent for Fe3+ overload. From a literature data analysis, a lack of information on the interaction of this molecule toward a series of metal cations emerged, inducing to fill out the topic. The complexing ability of deferiprone toward Ca2+, Mg2+, Cd2+ and Pb2+ was studied by potentiometry and 1H NMR spectroscopy, in KCl aqueous solutions at different ionic strength values (0.1 ≤ I/mol dm-3 ≤ 1.0) and T = 298.15 K. The same speciation model featured by the ML, ML2, ML3 and ML(OH) (M = metal and L = deferiprone or DFP) species was obtained for Cd2+ and Pb2+; the formation constants calculated at infinite dilution are: logTß = 7.23±0.02, 12.47±0.03, 16.70±0.04, and -2.53±0.04, respectively for Cd2+ and 9.91±0.01, 15.99±0.02, 19.93±0.05 and 0.99±0.02 for Pb2+. Only two species, namely ML and ML2, were determined for Ca2+ and Mg2+, whose formation constants at infinite dilution are respectively: 3.72±0.01 and 6.50±0.02, for the first one, 5.31±0.01 and 9.58±0.01, for the second. The ligand sequestering ability and affinity toward M2+ were evaluated by determining the pL0.5 and pM parameters at different pHs and ionic strengths. The results suggest that deferiprone has the best complexing and sequestering ability toward Pb2+, followed by Cd2+, Mg2+ and Ca2+, respectively. 1H NMR studies confirmed the DFP affinity for Cd2+ and Pb2+, and in combination with DFT calculations showed that metal cations are bound to the hydroxo-oxo moiety of the pyridinone ring. The data reported in this study provide information on the possible employment of a small molecule like deferiprone, as a chelating and sequestering agent for Pb2+ accumulation or overload from environmental and biological matrices.


Asunto(s)
Cadmio , Plomo , Deferiprona , Cadmio/química , Cationes , Modelos Teóricos , Quelantes/química
3.
Molecules ; 27(11)2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35684389

RESUMEN

Several studies have been performed so far for the effective recovery, detection and quantification of specific compounds and their degradation products in archaeological materials. According to the literature, lipid molecules are the most durable and widespread biomarkers in ancient pottery. Artificial ageing studies to simulate lipid alterations over time have been reported. In this review, specific lipid archaeological biomarkers and well-established sampling and extraction methodologies are discussed. Although suitable analytical techniques have unraveled archaeological questions, some issues remain open such as the need to introduce innovative and miniaturized protocols to avoid extractions with organic solvents, which are often laborious and non-environmentally friendly.


Asunto(s)
Cerámica , Lípidos , Arqueología/métodos , Biomarcadores
4.
Molecules ; 26(23)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34885669

RESUMEN

The thermodynamics of the interaction of L-glutamic-N,N-diacetic acid (GLDA) with protons was studied potentiometrically at different temperatures, ionic strengths and ionic media. Four protonation constants and corresponding enthalpy changes occurred at infinite dilution together with temperature and ionic strength coefficients. The medium effect was also interpreted in terms of the formation of weak complexes between the ligand and the cations of supporting electrolytes, resulting in a greater tendency of GLDA to chemically interact with Na+ rather than K+ and, in turn, (CH3)4N+. Formation constants of GLDA with Cd2+ were determined in NaCl(aq) at different ionic strength values. Five complex species were found, namely CdL2-, CdHL-, CdH2L0(aq), Cd2L0(aq), and Cd(OH)L3-, whose formation constant values at infinite dilution were log ß = 12.68, 17.61, 20.76, 17.52, and 1.77, respectively. All the species results were relevant in the pH range of natural waters, although the Cd2L0(aq) was observed only for CCd ≥ CGLDA and concentrations of >0.1 mmol dm-3. The sequestering ability of GLDA toward Cd2+, evaluated by means of pL0.5, was maximum at pH~10, whereas the presence of a chloride containing a supporting electrolyte exerted a negative effect. Among new generation biodegradable ligands, GLDA was the most efficient in Cd2+ sequestration.


Asunto(s)
Acetatos/química , Acetatos/metabolismo , Cadmio/metabolismo , Ácido Glutámico/análogos & derivados , Secuestrantes/química , Secuestrantes/metabolismo , Temperatura , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Concentración de Iones de Hidrógeno , Ligandos , Concentración Osmolar , Potasio/metabolismo , Potenciometría/métodos , Protones , Sodio/metabolismo , Cloruro de Sodio/metabolismo
5.
Environ Sci Pollut Res Int ; 28(37): 51072-51087, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33977428

RESUMEN

This work is focused on the design and preparation of polymer inclusion membranes (PIMs) for potential applications for stannous cation sequestration from water. For this purpose, the membranes have been synthesized employing two polymeric matrices, namely, polyvinylchloride (PVC) and cellulose triacetate (CTA), properly enriched with different plasticizers. The novelty here proposed relies on the modification of the cited PIMs by selected extractants expected to interact with the target cation in the membrane bulk or onto its surface, as well as in the evaluation of their performances in the sequestration of tin(II) in solution through chemometric tools. The composition of both the membrane and the solution for each trial was selected by means of a D-Optimal Experimental Design. The samples such prepared were characterized by means of TG-DTA, DSC, and static contact angles investigations; their mechanical properties were studied in terms of tensile strength and elastic modulus, whereas their morphology was checked by SEM. The sequestering ability of the PIMs toward stannous cation was studied by means of kinetic and isotherm experiments using DP-ASV. The presence of tin in the membranes after the sequestration tests was ascertained by µ-ED-XRF mapping on selected samples.


Asunto(s)
Membranas Artificiales , Polímeros , Cationes , Cloruro de Polivinilo , Agua
6.
J Mol Liq ; 319: 114164, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32904480

RESUMEN

The estimation of thermodynamic parameters of N-Acetyl-L-cysteine (NAC) protonation were determined in NaCl(aq), (CH3)4NCl(aq), (C2H5)4NI(aq), employing various temperature and ionic strengths conditions, by potentiometric measurements. The interaction of NAC with some essential metal cations (e.g., Ca2+, Mg2+ and Zn2+) was investigated as well at 298.15 K in NaCl(aq) in the ionic strength range 0.1 ≤ I/mol dm-3 ≤ 1.0. The values of protonation constants at infinite dilution and at T = 298.15 K are: log K 1 H = 9.962 ± 0.005 (S-H) and log K 2 H = 3.347 ± 0.008 (COO-H). In the presence of a background electrolyte, both log K 1 H and log K 2 H values followed the trend (C2H5)4NI ≥ (CH3)4NCl ≥ NaCl. The differences in the values of protonation constants among the three ionic media were interpreted in terms of variation of activity coefficients and formation of weak complexes. Accordingly, the determination of the stability of 4 species, namely: NaL-, NaHL0 (aq), (CH3)4NL-, (CH3)4NHL0 (aq) was assessed. In addition, as regards the interactions of Mg2+, Ca2+ and Zn2+ with NAC, the main species where the ML0 (aq), ML(OH)-, and ML2 2-, that were found to be important in the chemical speciation of NAC in real multicomponent solutions. The whole set of the data collected may be crucial for the development of NAC-based materials for natural fluids selective decontamination from heavy metals.

7.
J Inorg Biochem ; 189: 103-114, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30243118

RESUMEN

This paper presents an easy and low cost synthesis of chelating agents for potential medical and environmental applications, and the evaluation of the stability of their complexes with Fe3+, Al3+, Cu2+ and Zn2+. In the last years, we synthesized and characterized effective iron chelators based on two kojic acid units joined by different linkers in position 6. In this study, we preserved kojic acid (a cheap and non-toxic molecule) as the basic unit but joined the two kojic acid units through ethylene diamine, propylene diamine and butylene diamine by reacting them with the OH groups in position 2. The different anchoring position of the linker, as well as the linker length, can affect both protonation and complex formation equilibria. A thorough study of the protonation and complex formation equilibria of the three ligands toward the metal ions is presented based on combined potentiometric and spectroscopic studies, and 1H NMR. The obtained results allow remarking that the orientation of the oxygen atoms in the kojic acid units, related to the anchoring position of the linker, strongly affects the protonation constants, while the chelating ability is practically unaffected. The trivalent metal ions form stable complexes with a 2:3 metal to ligand stoichiometry through the oxygen donor atoms of the ligands, whereas divalent metal ions form binuclear complexes for which the nitrogen atoms from the linker might be involved in the coordination sphere. The stability of the complexes decreases with linker length, and the selectivity of the ligands toward metal ions grows in the order Zn2+ < Cu2+ < Al3+ < Fe3+.


Asunto(s)
Aluminio/química , Cobre/química , Compuestos Férricos/química , Zinc/química , Espectroscopía de Resonancia Magnética , Estructura Molecular
8.
Sci Total Environ ; 643: 704-714, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29957435

RESUMEN

Metal pollution, coming from both natural and anthropogenic sources, has become one of the most serious environmental problems. Various strategies have been tested with the aim of removing heavy metals from environment. In this contribution, containing a robust experimental work together with a critical literature analysis, the sequestering ability of a variety of ligands towards Sn2+ cation will be evaluated in the conditions of several natural fluids, i.e. sea water, fresh water, human blood plasma, urine and saliva. 13 structural and 11 thermodynamic descriptors will be selected for a total of thirty-eight molecules belonging to different classes (carboxylic acids, amines, amino acids, phosphonates, polyelectrolytes etc. …). For the filling of those missing data relative to the 11 thermodynamic descriptors, different strategies will be adopted, including simple correlations and Nipals algorithm. The evaluation of the sequestering ability of the ligands is assessed in terms of estimation of pL0.5 (total concentration of ligand required to bind the 50% of metal in solution), an empirical parameter that takes into account all the side reactions in solutions and does not depend on the speciation scheme. Partial least square calculations were performed to model the pL0.5 and to determine its correlation with the abovementioned descriptors. The possibility to design and build up new tailor-made molecules capable of effectively sequester Sn2+ in various conditions is crucial for practical applications in biosphere, hydrosphere and lithosphere.


Asunto(s)
Cationes/química , Contaminantes Ambientales/química , Restauración y Remediación Ambiental/métodos , Ligandos , Metales Pesados/química , Humanos , Agua de Mar , Termodinámica
9.
Chemosphere ; 183: 107-118, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28538167

RESUMEN

Thermodynamic information about the metal-ligand interaction between Fe3+, Zn2+, Cu2+ and Sn2+, and a biodegradable ligand as MGDA is reported. The speciation scheme was obtained by means of potentiometric measurements and isothermal titration calorimetry (to determine enthalpy changes) in NaCl medium. The formation of the ML and MLOH species was evidenced for all the metal cations, and for Fe3+ also the ML2 and ML(OH)2 were found. The relative stability, for the ML species, follows the order: Sn2+ > Fe3+ > Cu2+ > Zn2+. Stability constants and enthalpy changes were obtained at different ionic strengths, and data were modeled using the Debye-Hückel and SIT approaches to obtain data in a standard state. At infinite dilution, the enthalpy changes are largely negative for Cu2+ (-34.1 kJ mol-1) and Sn2+ (-16.6 kJ mol-1), slightly negative for Fe3+ (-3.3 kJ mol-1) and positive for Zn2+ (8.7 kJ mol-1). In all cases, the entropic contribution to the stability is predominant. The sequestering ability of MGDA was evaluated determining the pL0.5 values in different conditions. Comparing the data reported in this work and literature ones, some empirical relationships were obtained with predictive purpose. For example, using 11 data in the test set we have: log K (M/MGDA) ± 0.1 = 1.13 + 0.84·log K (M/NTA) Case studies were built up in the conditions of seawater, fresh water and urine to study the possible use of MGDA towards the metal cations here studied. Some considerations were also done in the light of the ocean acidification.


Asunto(s)
Alanina/análogos & derivados , Monitoreo del Ambiente/métodos , Agua Dulce/química , Glicina/análogos & derivados , Metales Pesados , Modelos Químicos , Agua de Mar/química , Contaminantes Químicos del Agua , Alanina/química , Disponibilidad Biológica , Calorimetría , Cationes , Glicina/química , Humanos , Ligandos , Metales Pesados/análisis , Metales Pesados/orina , Concentración Osmolar , Potenciometría , Cloruro de Sodio/química , Termodinámica , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/orina
10.
Springerplus ; 5(1): 928, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27386372

RESUMEN

New potentiometric experiments have been performed in NaCl and in (CH3)4NCl media, to determine the protonation constants, the protonation enthalpy changes and the solubility of six natural α-amino acids, namely Glycine (Gly), Alanine (Ala), Valine (Val), Leucine (Leu), Serine (Ser) and Phenylalanine (Phe). The aim of the work is the rationalization of the protonation thermodynamics (log [Formula: see text], solubility and [Formula: see text]) in NaCl, determining recommended, tentative or provisional values in selected experimental conditions and to report, for the first time, data in a weak interacting medium, as (CH3)4NCl. Literature data analysis was performed selecting the most reliable values, analyzed together with new data here reported. Significant trends and similarities were observed in the behavior of the six amino acids, and in some cases it was possible to determine common parameters for the ionic strength and temperature dependence. In general, the first protonation step, relative to the amino group, is significantly exothermic (average value is [Formula: see text] = -44.5 ± 0.4 kJ mol(-1) at infinite dilution and T = 298.15 K), and the second, relative to the carboxylate group, is fairly close to zero ([Formula: see text] = -2.5 ± 1.6, same conditions). In both cases, the main contribution to the proton binding reaction is mainly entropic in nature. For phenylalanine and leucine, solubility measurements at different concentrations of supporting electrolyte allowed to determine total and specific solubility values, then used to obtain the Setschenow and the activity coefficients of all the species involved in the protonation equilibria. The values of the first protonation constant in (CH3)4NCl are lower than the corresponding values in NaCl, due to the weak interaction between the deprotonated amino group and (CH3)4N(+). In this light, differences between the protonation functions in NaCl and (CH3)4NCl were used for the quantification of the stability of the weak [(CH3)4N(+)-L(-)] complexes that resulted log K = -0.38 ± 0.07 as an average value for the six amino acids.

11.
Chemosphere ; 150: 341-356, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26921587

RESUMEN

Ethylenediamine-N,N'-disuccinic acid is a biodegradable alternative to EDTA, therefore its use for the sequestration of Ca(2+), Sn(2+), Cu(2+), Zn(2+) and Fe(3+) is analyzed. New data on its binding ability towards these cations were obtained with potentiometric, voltammetric and calorimetric measurements at different ionic strengths and at T = 298.15 K. Real multi-component fluids, namely fresh water, urine, sea water, saliva and blood plasma were chosen as case studies to evaluate the sequestering ability of EDDS in comparison with EDTA. Speciation diagrams were drawn in selected conditions, considering all interactions among the "natural" components of the fluid and those studied in this work, EDDS and EDTA (cL = 1 mmol dm(-3)) as sequestering agents and the cited metal cations (cM ∼ 10(-5) mol dm(-3)). The comparison of the sequestering ability of EDDS and EDTA is done using pM and pL0.5. In blood plasma the plasma mobilizing index was adopted. It was found that EDDS is a good alternative to EDTA, which tends to bind Ca(2+) and Mg(2+) more than EDDS. In particular, EDTA cannot be used as a sequestrant for Sn(2+) when cCa > cEDTA. EDDS is more efficient than EDTA at pH < 8, particularly in urine, where carbonate is absent. In sea water, the sequestering ability of EDDS towards Fe(3+) is higher than that of EDTA. In blood plasma, the PMI of EDDS towards Cu(2+) is higher than that of EDTA. Thermodynamic information, in terms of ΔH and ΔS, for the protonation and metal complex formation reactions are reported.


Asunto(s)
Contaminantes Ambientales/análisis , Etilenodiaminas/química , Metales Pesados/análisis , Ríos/química , Saliva/química , Agua de Mar/química , Succinatos/química , Disponibilidad Biológica , Cationes , Técnicas de Química Analítica , Ácido Edético/química , Contaminantes Ambientales/sangre , Contaminantes Ambientales/orina , Humanos , Metales Pesados/sangre , Metales Pesados/orina , Concentración Osmolar , Termodinámica
13.
J Agric Food Chem ; 60(33): 8075-82, 2012 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-22845864

RESUMEN

Quantitative parameters for the interactions between phytate (Phy) and Al(3+), Fe(3+), and Cr(3+) were determined potentiometrically in NaNO(3) aqueous solutions at I = 0.10 mol L(-1) and T = 298.15 K. Different complex species were found in a wide pH range. The various species are partially protonated, depending on the pH in which they are formed, and are indicated with the general formula MH(q)Phy (with 0 ≤ q ≤ 6). In all cases, the stability of the FeH(q)Phy species is several log K units higher than that of the analogous AlH(q)Phy and CrH(q)Phy species. For example, for the MH(2)Phy species, the stability trend is log K(2) = 15.81, 20.61, and 16.70 for Al(3+), Fe(3+), and Cr(3+), respectively. The sequestering ability of phytate toward the considered metal cations was evaluated by calculating the pL(0.5) values (i.e., the total ligand concentration necessary to bind 50% of the cation present in trace in solution) at different pH values. In general, phytate results in a quite good sequestering agent toward all three cations in the whole investigated pH range, but the order of pL(0.5) depends on it. For example, at pH 5.0 it is pL(0.5) = 5.33, 5.44, and 5.75 for Fe(3+), Cr(3+), and Al(3+), respectively (Fe(3+) < Cr(3+) < Al(3+)); at pH 7.4 it is pL(0.5) = 9.94, 9.23, and 8.71 (Al(3+) < Cr(3+) < Fe(3+)), whereas at pH 9.0 it is pL(0.5) = 10.42, 10.87, and 8.34 (Al(3+) < Fe(3+) < Cr(3+)). All of the pL(0.5) values, and therefore the sequestering ability, regularly increase with increasing pH, and the dependence of pL(0.5) on pH was modeled using some empirical equations.


Asunto(s)
Cationes/química , Metales/metabolismo , Ácido Fítico/metabolismo , Aluminio/química , Cromo/química , Investigación Empírica , Concentración de Iones de Hidrógeno , Hierro/química , Ligandos , Potenciometría/instrumentación , Potenciometría/métodos
14.
Talanta ; 72(3): 1059-65, 2007 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19071725

RESUMEN

Protonation constants of succinic, 1,2,3-propanetricarboxylic and 1,2,3,4-butanetetracarboxylic anions were determined in NaCl(aq)+KCl(aq) mixtures, at three ionic strengths, I=1.2, 3 and 4.5molL(-1). Experimental evidences showed that the function log K(H)=f(y) (y=[Na(+)]/([Na(+)]+[K(+)])) is not linear, indicating mixing effects on the protonation constants. The Guggenheim zeroth approximation holds that the above function can be written as:where K(Na)(H)andK(K)(H) represent protonation constants in pure salt solutions and Delta is a parameter that accounts for the mixing effect. Fitting of protonation constants to the above function gives excellent results. The Delta values can be treated in terms of mixing free energy. The behaviour of protonation constants in mixed salt solution can be interpreted by considering the formation of simple and mixed weak complexes; the protonation constants in mixed NaKCl electrolytes can be fitted to the equation: log(10)K(Na-K)(H)=log(10)K(K)(H)-log(10)(1+A(1)C(Na)+A(2)C(Na)C(K)), where A(1) is a measure of the interaction of Na(+) with the carboxylic anion and A(2) is proportional to the triple interaction Na(+)-K(+)-L(z-). Moreover, by using suitable calculation methods, it is possible to calculate the formation constants of simple and mixed ion pairs. As an example, for 1,2,3,4-butanetracarboxylic anion (L(4-)), we calculated K(Na(+)+H(i)L((4-i)-)=NaH(i)L((3-i)-))=0.67, 0.33 and 0.13; K(K(+)+NaH(i)L((3-i)-)=KNaH(i)L((2-i)-))=1.41, 1.29 and 0.9 for i=0, 1 and 2, respectively, indicating a significant tendency to form mixed alkali metal ion pairs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA