Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 18798, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138271

RESUMEN

In tissue characterization and cancer diagnostics, multimodal imaging has emerged as a powerful technique. Thanks to computational advances, large datasets can be exploited to discover patterns in pathologies and improve diagnosis. However, this requires efficient and scalable image retrieval methods. Cross-modality image retrieval is particularly challenging, since images of similar (or even the same) content captured by different modalities might share few common structures. We propose a new application-independent content-based image retrieval (CBIR) system for reverse (sub-)image search across modalities, which combines deep learning to generate representations (embedding the different modalities in a common space) with robust feature extraction and bag-of-words models for efficient and reliable retrieval. We illustrate its advantages through a replacement study, exploring a number of feature extractors and learned representations, as well as through comparison to recent (cross-modality) CBIR methods. For the task of (sub-)image retrieval on a (publicly available) dataset of brightfield and second harmonic generation microscopy images, the results show that our approach is superior to all tested alternatives. We discuss the shortcomings of the compared methods and observe the importance of equivariance and invariance properties of the learned representations and feature extractors in the CBIR pipeline. Code is available at: https://github.com/MIDA-group/CrossModal_ImgRetrieval .

2.
Clin Physiol Funct Imaging ; 44(4): 340-348, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38576112

RESUMEN

BACKGROUND: Computed tomography (CT) offers pulmonary volumetric quantification but is not commonly used in healthy individuals due to radiation concerns. Chronic airflow limitation (CAL) is one of the diagnostic criteria for chronic obstructive pulmonary disease (COPD), where early diagnosis is important. Our aim was to present reference values for chest CT volumetric and radiodensity measurements and explore their potential in detecting early signs of CAL. METHODS: From the population-based Swedish CArdioPulmonarybioImage Study (SCAPIS), 294 participants aged 50-64, were categorized into non-CAL (n = 258) and CAL (n = 36) groups based on spirometry. From inspiratory and expiratory CT images we compared lung volumes, mean lung density (MLD), percentage of low attenuation volume (LAV%) and LAV cluster volume between groups, and against reference values from static pulmonary function test (PFT). RESULTS: The CAL group exhibited larger lung volumes, higher LAV%, increased LAV cluster volume and lower MLD compared to the non-CAL group. Lung volumes significantly deviated from PFT values. Expiratory measurements yielded more reliable results for identifying CAL compared to inspiratory. Using a cut-off value of 0.6 for expiratory LAV%, we achieved sensitivity, specificity and positive/negative predictive values of 72%, 85% and 40%/96%, respectively. CONCLUSION: We present volumetric reference values from inspiratory and expiratory chest CT images for a middle-aged healthy cohort. These results are not directly comparable to those from PFTs. Measures of MLD and LAV can be valuable in the evaluation of suspected CAL. Further validation and refinement are necessary to demonstrate its potential as a decision support tool for early detection of COPD.


Asunto(s)
Mediciones del Volumen Pulmonar , Pulmón , Valor Predictivo de las Pruebas , Enfermedad Pulmonar Obstructiva Crónica , Espirometría , Humanos , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Masculino , Femenino , Pulmón/diagnóstico por imagen , Pulmón/fisiopatología , Mediciones del Volumen Pulmonar/métodos , Reproducibilidad de los Resultados , Suecia , Tomografía Computarizada por Rayos X/métodos , Volumen Espiratorio Forzado , Diagnóstico Precoz
3.
J Med Imaging (Bellingham) ; 7(1): 014005, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32206683

RESUMEN

Purpose: Voxel-level hypothesis testing on images suffers from test multiplicity. Numerous correction methods exist, mainly applied and evaluated on neuroimaging and synthetic datasets. However, newly developed approaches like Imiomics, using different data and less common analysis types, also require multiplicity correction for more reliable inference. To handle the multiple comparisons in Imiomics, we aim to evaluate correction methods on whole-body MRI and correlation analyses, and to develop techniques specifically suited for the given analyses. Approach: We evaluate the most common familywise error rate (FWER) limiting procedures on whole-body correlation analyses via standard (synthetic no-activation) nominal error rate estimation as well as smaller prior-knowledge based stringency analysis. Their performance is compared to our anatomy-based method extensions. Results: Results show that nonparametric methods behave better for the given analyses. The proposed prior-knowledge based evaluation shows that the devised extensions including anatomical priors can achieve the same power while keeping the FWER closer to the desired rate. Conclusions: Permutation-based approaches perform adequately and can be used within Imiomics. They can be improved by including information on image structure. We expect such method extensions to become even more relevant with new applications and larger datasets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA