Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; 13(16): e2303280, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38445812

RESUMEN

Conventional therapies for inflammatory bowel diseases are mainly based on systemic treatments which cause side effects and toxicity over long-term administration. Nanoparticles appear as a valid alternative to allow a preferential accumulation in inflamed tissues following oral administration while reducing systemic drug exposure. To increase their residence time in the inflamed intestine, the nanoparticles are here associated with a hydrogel matrix. A bioadhesive peptide-based hydrogel is mixed with nanoemulsions, creating a hybrid lipid-polymer nanocomposite. Mucopenetrating nanoemulsions of 100 nm are embedded in a scaffold constituted of the self-assembling peptide hydrogel product PuraStat. The nanocomposite is fully characterized to study the impact of lipid particles in the hydrogel structure. Rheological measurements and circular dichroism analyses are performed to investigate the system's microstructure and physical properties. Biodistribution studies demonstrate that the nanocomposite acts as a depot in the stomach and facilitates the slow release of the nanoemulsions in the intestine. Efficacy studies upon oral administration of the drug-loaded system show the improvement of the disease score in a mouse model of intestinal inflammation.


Asunto(s)
Hidrogeles , Péptidos , Animales , Hidrogeles/química , Péptidos/química , Péptidos/farmacocinética , Péptidos/farmacología , Ratones , Sistemas de Liberación de Medicamentos/métodos , Distribución Tisular , Nanopartículas/química , Inflamación/tratamiento farmacológico , Administración Oral , Nanocompuestos/química , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Intestinos/efectos de los fármacos
2.
Eur J Pharm Biopharm ; 192: 185-195, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37769880

RESUMEN

Dogs are the main source of animal and human cystic echinococcosis caused by the Cestode parasite Echinococcus granulosus. Dog vaccination seems to be a good strategy to control this parasitic disease. Here we present the development of a polymeric nanoparticle-based oral vaccine for dogs against Echinococcus granulosus delivered in enteric-coated capsules. To achieve our target, we encapsulated two recombinant antigens into biodegradable polymeric nanoparticles in the presence of Monophosphoryl lipid A as an adjuvant to ensure efficient delivery and activation of a protective mucosal immune response. The formulated delivery system showed a nanoparticle size less than 200 nm with more than 80 % antigen encapsulation efficiency and conserved integrity and immunogenicity. The nanoparticle surface was coated with chitosan to enhance adhesion to the gut mucosa and a subsequent antigen delivery. Chitosan-coated nanoparticles showed a higher cell internalization in murine macrophages and dendritic cells as well as a higher penetration into Caco-2 cells in vitro. Antigen-loaded nanoparticles were freeze-dried and enteric-coated capsules were filled with the obtained powder. The obtained results show a promising nanoparticles delivery system for oral vaccination.


Asunto(s)
Quitosano , Equinococosis , Echinococcus granulosus , Vacunas , Perros , Humanos , Animales , Ratones , Echinococcus granulosus/fisiología , Células CACO-2 , Equinococosis/prevención & control , Equinococosis/parasitología , Antígenos
3.
Biomacromolecules ; 24(6): 2892-2907, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37228181

RESUMEN

Oral administration of nanoparticles (NPs) is a promising strategy to overcome solubility and stability issues of many active compounds. However, this route faces major obstacles related to the hostile gastrointestinal (GI) environment, which impairs the efficacy of orally administered nanomedicines. Here, we propose nanocomposites as a promising approach to increase the retention time of NPs in the intestinal tract by using bio- and mucoadhesive matrixes able to protect the cargo until it reaches the targeted area. A microfluidic-based approach has been applied for the production of tailored nanoemulsions (NEs) of about 110 nm, used for the encapsulation of small hydrophobic drugs such as the anti-inflammatory JAK-inhibitor tofacitinib. These NEs proved to be efficiently internalized into a mucus-secreting human intestinal monolayer of Caco-2/HT29-MTX cells and to deliver tofacitinib to subepithelial human THP-1 macrophage-like cells, reducing their inflammatory response. NEs were then successfully encapsulated into alginate hydrogel microbeads of around 300 µm, which were characterized by rheological experiments and dried to create a long-term stable system for pharmaceutical applications. Finally, ex vivo experiments on excised segments of rats' intestine proved the bioadhesive ability of NEs embedded in alginate hydrogels compared to free NEs, showing the advantage that this hybrid system can offer for the treatment of intestinal pathologies.


Asunto(s)
Alginatos , Nanopartículas , Ratas , Humanos , Animales , Alginatos/química , Células CACO-2 , Intestinos , Antiinflamatorios , Administración Oral , Hidrogeles , Nanopartículas/química , Sistemas de Liberación de Medicamentos
4.
J Control Release ; 353: 1037-1049, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36442614

RESUMEN

mRNA based infectious disease vaccines have opened the venue for development of novel nucleic acids-based therapeutics. For all mRNA therapeutics dedicated delivery systems are required, where different functionalities and targeting abilities need to be optimized for the respective applications. One option for advanced formulations with tailored properties are lipid-polymer hybrid nanoparticles with complex nanostructure, which allow to combine features of several already well described nucleic acid delivery systems. Here, we explored hyaluronic acid (HA) as coating of liposome-mRNA complexes (LRCs) to investigate effects of the coating on surface charge, physicochemical characteristics and biological activity. HA was electrostatically attached to positively charged complexes, forming hybrid LRCs (HLRCs). At different N/P ratios, physico-chemical characterization of the two sets of particles showed similarity in size (around 200 nm) and mRNA binding abilities, while the presence of the HA shell conferred a negative surface charge to otherwise positive complexes. High transfection efficiency of LRCs and HLRCs in vitro has been obtained in THP-1 and human monocytes derived from PBMC, an interesting target cell population for cancer and immune related pathologies. In mice, quantitative biodistribution of radiolabeled LRC and HLRC particles, coupled with bioluminescence studies to detect the protein translation sites, hinted towards both particles' accumulation in the hepatic reticuloendothelial system (RES). mRNA translated proteins though was found mainly in the spleen, a major source for immune cells, with preference for expression in macrophages. The results showed that surface modifications of liposome-mRNA complexes can be used to fine-tune nanoparticle physico-chemical characteristics. This provides a tool for assembly of stable and optimized nanoparticles, which are prerequisite for future therapeutic interventions using mRNA-based nanomedicines.


Asunto(s)
Nanopartículas , Ácidos Nucleicos , Ratones , Humanos , Animales , Liposomas/química , Distribución Tisular , Leucocitos Mononucleares , Polímeros/química , Nanopartículas/química , Transfección
5.
Nanomedicine ; 47: 102623, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36309185

RESUMEN

In a context of drug repurposing, pentamidine (PTM), an FDA-approved antiparasitic drug, has been proposed to reverse the splicing defects associated in myotonic dystrophy type 1 (DM1). However, clinical use of PTM is hinder by substantial toxicity, leading to find alternative delivery strategies. In this work we proposed hyaluronic acid-based nanoparticles as a novel encapsulation strategy to efficiently deliver PTM to skeletal muscles cells. In vitro studies on C2C12 myoblasts and myotubes showed an efficient nanoparticles' internalization with minimal toxicity. More interestingly, our findings evidenced for the first time the endosomal escape of hyaluronic acid-based nanocarriers. Ex vivo studies showed an efficient nanoparticles' internalization within skeletal muscle fibers. Finally, the therapeutic efficacy of PTM-loaded nanosystems to reduce the number of nuclear foci has been demonstrated in a novel DM1 in vitro model. So far, current data demonstrated the potency of hyaluronic acid-based nanosystems as efficient nanocarrier for delivering PTM into skeletal muscle and mitigate DM1 pathology.


Asunto(s)
Distrofia Miotónica , Humanos , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , Pentamidina , Ácido Hialurónico , Músculo Esquelético
6.
Eur J Pharm Sci ; 166: 105985, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34455087

RESUMEN

Non-ideal behaviour of mixed ions is disclosed in skin absorption experiments of mixed halide anions in excised pig skin. Comparison of skin absorption of pure and mixed ions shows enhanced penetration of chaotropic ions from mixed solutions. An experimental design and statistical analysis using a Scheffé {3,2} simplex-lattice allows investigating the full ternary diagram of anion mixtures of fluoride, bromide and iodide. Synergism in mixed absorption is observed for chaotropic bromide and iodide anions. A refined analysis highlighting specific interactions is made by considering the ratio of the absorbed amount to the ion activity instead of the directly measured absorbed amount. Statistical analysis discards non-significant effects and discloses specific interactions. Such interactions between bromide and iodide cause an absorption enhancement of their partner by a factor of 2-3 with respect to the case of ideal mixing. It is proposed that enhanced absorption from mixed solution involves the formation of neutral complex species of mixed bromide and iodide with endogenous magnesium or calcium inside stratum corneum.


Asunto(s)
Absorción Cutánea , Agua , Animales , Aniones/metabolismo , Fluoruros/metabolismo , Piel/metabolismo , Soluciones , Porcinos , Agua/metabolismo
7.
J Control Release ; 333: 579-592, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33838210

RESUMEN

In this work, nanocomposites that combine mucopenetrating and mucoadhesive properties in a single system are proposed as innovative strategy to increase drug residence time in the intestine following oral administration. To this aim, novel mucoadhesive chitosan (CH) sponges loaded with mucopenetrating nanoemulsions (NE) were developed via freeze-casting technique. The NE mucopenetration ability was determined studying the surface affinity and thermodynamic binding of the nanosystem with mucins. The ability of nanoparticles to penetrate across a preformed mucins layer was validated by 3D-time laps Confocal Laser Scanning Microscopy imaging. Microscopy observations (Scanning Electron Microscopy and Optical Microscopy) showed that NE participated in the structure of the sponge affecting its stability and in vitro release kinetics. When incubated with HCT 116 and Caco-2 cell lines, the NE proved to be cytocompatible over a wide concentration range. Finally, the in vivo biodistribution of the nanocomposite was evaluated after oral gavage in healthy mice. The intestinal retention of NE was highly enhanced when loaded in the sponge compared to the NE suspension. Overall, our results demonstrated that the developed nanocomposite sponge is a promising system for sustained drug intestinal delivery.


Asunto(s)
Quitosano , Nanocompuestos , Nanopartículas , Administración Oral , Animales , Células CACO-2 , Sistemas de Liberación de Medicamentos , Humanos , Intestinos , Ratones , Distribución Tisular
8.
Pharmaceutics ; 13(2)2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669654

RESUMEN

Muscular Dystrophies (MDs) are a group of rare inherited genetic muscular pathologies encompassing a variety of clinical phenotypes, gene mutations and mechanisms of disease. MDs undergo progressive skeletal muscle degeneration causing severe health problems that lead to poor life quality, disability and premature death. There are no available therapies to counteract the causes of these diseases and conventional treatments are administered only to mitigate symptoms. Recent understanding on the pathogenetic mechanisms allowed the development of novel therapeutic strategies based on gene therapy, genome editing CRISPR/Cas9 and drug repurposing approaches. Despite the therapeutic potential of these treatments, once the actives are administered, their instability, susceptibility to degradation and toxicity limit their applications. In this frame, the design of delivery strategies based on nanomedicines holds great promise for MD treatments. This review focuses on nanomedicine approaches able to encapsulate therapeutic agents such as small chemical molecules and oligonucleotides to target the most common MDs such as Duchenne Muscular Dystrophy and the Myotonic Dystrophies. The challenge related to in vitro and in vivo testing of nanosystems in appropriate animal models is also addressed. Finally, the most promising nanomedicine-based strategies are highlighted and a critical view in future developments of nanomedicine for neuromuscular diseases is provided.

9.
Drug Deliv Transl Res ; 11(2): 675-691, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33738676

RESUMEN

This study explored the design of supersaturable self-microemulsifying drug delivery systems (S-SMEDDS) to address poor solubility and oral bioavailability of a novel benzimidazole derivative anticancer drug (BI). Firstly, self-microemulsifying drug delivery systems SMEDDS made of Miglyol® 812, Kolliphor® RH40, Transcutol® HP, and ethanol were prepared and loaded with the BI drug. Upon dispersion, the systems formed neutrally charged droplets of around 20 nm. However, drug precipitation was observed following incubation with simulated gastric fluid (pH 1.2). Aiming at reducing this precipitation and enhancing drug payload, supersaturable systems were then prepared by adding 1% hydroxypropyl cellulose as precipitation inhibitor. Supersaturable systems maintained a higher amount of drug in a supersaturated state in gastric medium compared with conventional formulations and were stable in simulated intestinal medium (pH 6.8). In vitro cell studies using Caco-2 cell line showed that these formulations reduced in a transient manner the transepithelial electrical resistance of the monolayers without toxicity. Accordingly, confocal images revealed that the systems accumulated at tight junctions after a 2 h exposure. In vivo pharmacokinetic studies carried out following oral administration of BI-loaded S-SMEDDS, SMEDDS, and free drug to healthy mice showed that supersaturable systems promoted drug absorption compared with the other formulations. Overall, these data highlight the potential of using the supersaturable approach as an alternative to conventional SMEDDS for improving oral systemic absorption of lipophilic drugs.


Asunto(s)
Antineoplásicos , Sistemas de Liberación de Medicamentos , Administración Oral , Animales , Bencimidazoles , Disponibilidad Biológica , Células CACO-2 , Emulsiones , Humanos , Ratones , Ratas , Ratas Sprague-Dawley , Solubilidad
10.
Drug Deliv Transl Res ; 11(2): 445-470, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33534107

RESUMEN

Oral delivery is considered the favoured route of administration for both local and systemic delivery of active molecules. Formulation of drugs in conventional systems and nanoparticles has provided opportunities for targeting the gastrointestinal (GI) tract, increasing drug solubility and bioavailability. Despite the achievements of these delivery approaches, the development of a product with the ability of delivering drug molecules at a specific site and according to patients' needs remains a challenging endeavour. The complexity of the physicochemical properties of colloidal systems, their stability in different regions of the gastrointestinal tract, and interaction with the restrictive biological barriers hampered their success for oral precise medicine. To overcome these issues, nanoparticles have been combined with polymers to create hybrid nanosystems, namely nanocomposites. They offer enormous possibilities of structural and mechanical modifications to both nanoparticles and polymeric matrixes to generate systems with new properties, functions, and applications for oral delivery. In this review, nanocomposites' physicochemical and functional properties intended to target specific regions of the GI tract-oral cavity, stomach, small bowel, and colon-are analysed. In parallel, it is provided an insight in the nanocomposite solutions for oral delivery intended for systemic and local absorption, together with a focus on inflammatory bowel diseases (IBDs). Additional difficulties in managing IBD related to the alteration in the physiology of the intestine are described. Finally, future perspectives and opportunities for advancement in this field are discussed.


Asunto(s)
Productos Biológicos , Nanocompuestos , Nanopartículas , Administración Oral , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Humanos
11.
Int J Pharm ; 591: 119991, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33091552

RESUMEN

Skin constitutes a barrier protecting the organism against physical and chemical factors. Therefore, it is constantly exposed to the xenobiotics, including inorganic ions that are ubiquitous in the environment. Some of them play important roles in homeostasis and regulatory functions of the body, also in the skin, while others can be considered dangerous. Many authors have shown that inorganic ions could penetrate inside the skin and possibly induce local effects. In this review, we give an account of the current knowledge on the effects of skin exposure to inorganic ions. Beneficial effects on skin conditions related to the use of thermal spring waters are discussed together with the application of aluminium in underarm hygiene products and silver salts in treatment of difficult wounds. Finally, the potential consequences of dermal exposure to topical sensitizers and harmful heavy ions including radionuclides are discussed.


Asunto(s)
Absorción Cutánea , Piel , Iones/metabolismo , Plata/metabolismo , Piel/metabolismo
12.
Int J Pharm ; 583: 119373, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32339629

RESUMEN

For several years, the international context is deeply affected by the use of chemical and biological weapons. The use of CBRN (Chemical Biological Radiological Nuclear) threat agents from military stockpiles or biological civilian industry demonstrate the critical need to improve capabilities of decontamination for civilians and military. Physical decontamination systems that operate only by adsorption and displacement such as Fuller's Earth, have the drawback of not neutralizing hazardous agents, giving place to cross contaminations. Consequently, the development of a formulation based on metal oxide nanoparticles attracts considerable interest, since they offer physicochemical properties that allow them to both adsorb and degrade toxic compounds. Thus, the aim of this study is to found metal oxide nanoparticles with a versatile activity on both chemical and biological toxic agents. Therefore, several metal oxides such as MgO, TiO2, CeO2, ZnO and ZrO2 were characterized and their decontamination kinetics of less-toxic surrogate of VX, paraoxon, were studied in vitro. To determine the antimicrobial activity of these nanoparticles, simulants of biological terrorist threat were used by performing a 3-hours decontamination kinetics. This proof-of-concept study showed that MgO is the only one that exhibits both chemical and antibacterial actions but without sporicidal activity.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Armas Biológicas , Sustancias para la Guerra Química/toxicidad , Descontaminación , Óxido de Magnesio/farmacología , Nanopartículas del Metal , Paraoxon/toxicidad , Antibacterianos/química , Bacterias/crecimiento & desarrollo , Cerio/farmacología , Sustancias para la Guerra Química/química , Hidrólisis , Cinética , Óxido de Magnesio/química , Modelos Químicos , Paraoxon/química , Prueba de Estudio Conceptual , Titanio/farmacología , Óxido de Zinc/farmacología , Circonio/farmacología
13.
Int J Pharm ; 568: 118526, 2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31323370

RESUMEN

Nanoparticles of polymeric complexes made of hyaluronic acid and polyarginine were investigated for the encapsulation of the cationic hydrophilic drug pentamidine isethionate. The interaction between the anionic hyaluronic acid and the cationic pentamidine resulting in the formation of polyelectrolyte complexes was firstly studied. Then, nanoparticles made of hyaluronic acid and polyarginine loaded with pentamidine were developed. These drug delivery systems consist of a monodisperse population of negatively charged pentamidine-loaded nanoparticles with a high drug encapsulation rate (80%). Such high encapsulation efficiency coming from ion exchange was confirmed by measurements of the counterion isethionate released from pentamidine during nanoparticles formation. Besides, freeze-dried pentamidine-loaded nanoparticles kept their integrity after their reconstitution in water. In vitro studies on human lung (A549) and breast (MDA-MB-231) cancer cell lines showed that pentamidine-loaded nanoparticles were more cytotoxic in comparison to the free drug, suggesting an enhanced internalization of encapsulated drug by cancer cells.


Asunto(s)
Antineoplásicos/administración & dosificación , Sistemas de Liberación de Medicamentos , Ácido Hialurónico/administración & dosificación , Nanopartículas/administración & dosificación , Pentamidina/administración & dosificación , Péptidos/administración & dosificación , Antineoplásicos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Liberación de Fármacos , Estabilidad de Medicamentos , Liofilización , Humanos , Ácido Hialurónico/química , Nanopartículas/química , Pentamidina/química , Péptidos/química , Solubilidad
14.
Int J Pharm ; 563: 79-90, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-30825557

RESUMEN

We present a systematic study of the role of poly(ethylene glycol) (PEG) content in NPs on drug skin absorption. Cholecalciferol-loaded NPs of 100 nm of diameter were prepared by flash nanoprecipitation from PLA-b-PEG copolymers of various PEG lengths. As PEG content increased in the polymer, we observed a transition from a frozen solid particle structure to a more dynamic particle structure. Skin absorption studies showed that polymer composition influenced drug penetration depending on skin condition (intact or impaired). In intact skin, highly PEGylated NPs achieved the best skin absorption, even if the penetration differences between the NPs were low. In impaired skin, on the contrary, non-PEGylated NPs (PLA NPs) promoted a strong drug deposition. Further investigations revealed that the strong drug accumulation from PLA NPs in impaired skin was mediated by aggregation and sedimentation of NPs due to the release of charged species from the skin. In contrast, the dynamic structure of highly PEGylated NPs promoted wetting of the surface and interactions with skin lipids, improving drug absorption in intact skin. Since NPs structure and surface properties determine the drug penetration mechanisms at the NP-skin interface, this work highlights the importance of properly tuning NPs composition according to skin physiopathology.


Asunto(s)
Colecalciferol/administración & dosificación , Lactatos/administración & dosificación , Nanopartículas/administración & dosificación , Polietilenglicoles/administración & dosificación , Absorción Cutánea , Piel/metabolismo , Animales , Colecalciferol/química , Femenino , Técnicas In Vitro , Lactatos/química , Peso Molecular , Nanopartículas/química , Polietilenglicoles/química , Piel/lesiones , Porcinos
15.
Phys Chem Chem Phys ; 21(10): 5455-5465, 2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30801105

RESUMEN

Repeated attacks using organophosphorus compounds, in military conflicts or terrorist acts, necessitate developing inexpensive and readily available decontamination systems. Nanosized cerium oxide is a suitable candidate, acting as a heterogeneous catalyst for the degradation of organophosphorus compounds such as VX agent or sarin. However, the reaction mechanism of the phosphatase mimetic activity of CeO2 nanoparticles is not fully described. Adsorption, surface-promoted hydrolysis, and desorption cycles strongly depend on the physico-chemical characteristics of the facets. In this study, CeO2 nanoparticles with different shapes were elaborated by hydrothermal synthesis. Nano-octahedra, nanocubes, or nanorods were selectively obtained under different conditions (temperature, concentration and nature of the precursors). The degradation activity according to the crystal faces was evaluated in vitro by measuring the degradation kinetics of paraoxon organophosphate in the presence of CeO2 nanoparticles. The results show an influence of both specific surface area and crystal faces of the nanoparticles, with higher activity for {111} facets compared to {100} facets at 32 °C. The relative activity between the facets is ascribed to the adsorption probability, assuming coordination between the phosphoryl oxygen and cerium atoms, but also to the surface density of the Ce doublets with relevant spacing for phosphatase mimetic activity.

16.
J Drug Target ; 27(5-6): 634-645, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30461322

RESUMEN

In this work, a novel lipophilic 5-fluorouracil (5-FU) derivative was synthesised and encapsulated into lipid nanocapsules (LNC). 5-FU was modified with lauric acid to give a lipophilic mono-lauroyl-derivative (5-FU-C12, MW of about 342 g/mol, yield of reaction 70%). 5-FU-C12 obtained was efficiently encapsulated into LNC (encapsulation efficiency above 90%) without altering the physico-chemical characteristics of LNC. The encapsulation of 5-FU-C12 led to an increased stability of the drug when in contact with plasma being the drug detectable until 3 h following incubation. Cytotoxicity assay carried out using MTS on 2D cell culture showed that 5-FU-C12-loaded LNC had an enhanced cytotoxic effect on glioma (9L) and human colorectal (HTC-116) cancer cell line in comparison with 5-FU or 5-FU-C12. Then, HCT-116 tumour spheroids were cultivated and the reduction of spheroid volume was measured following treatment with drug-loaded LNC and drugs alone. Similar reduction on spheroids volume was observed following the treatment with drug-loaded LNC, 5-FU-C12 and 5-FU alone, while blank LNC displayed a reduction in cell viability only at high concentration. Globally, our data suggest that the encapsulation increased the activity of the 5-FU-C12. However, in-depth evaluations of LNC permeability into spheroids are needed to disclose the potential of these nanosystems for cancer treatment.


Asunto(s)
Antineoplásicos/administración & dosificación , Portadores de Fármacos/química , Fluorouracilo/análogos & derivados , Fluorouracilo/administración & dosificación , Lípidos/química , Nanocápsulas/química , Esferoides Celulares/efectos de los fármacos , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Composición de Medicamentos , Sistemas de Liberación de Medicamentos/métodos , Fluorouracilo/farmacología , Células HCT116 , Humanos , Esferoides Celulares/patología
17.
Int J Pharm ; 553(1-2): 120-131, 2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30316003

RESUMEN

We investigated the influence of nanoparticle (NP) surface composition on different aspects of skin delivery of a lipophilic drug: chemical stability, release and skin penetration. Cholecalciferol was chosen as a labile model drug. Poly(lactic acid) (PLA)-based NPs without surface coating, with a non-ionic poly(ethylene glycol) (PEG) coating, or with a zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) coating were prepared using flash nanoprecipitation. Process was optimized to obtain similar hydrodynamic diameters. Polymeric NPs were compared to non-polymeric cholecalciferol formulations. Cholecalciferol stability in aqueous medium was improved by polymeric encapsulation with a valuable effect of a hydrophilic coating. However, the in vitro release of the drug was found independent of the presence of any polymer, as for the drug penetration in an intact skin model. Such tendency was not observed in impaired skin since, when stratum corneum was removed, we found that a neutral hydrophilic coating around NPs reduced drug penetration compared to pure drug NPs and bare PLA NPs. The nature of the hydrophilic block (PEG or PMPC) had however no impact. We hypothesized that NPs surface influenced drug penetration in impaired skin due to different electrostatic interactions between NPs and charged skin components of viable skin layers.


Asunto(s)
Colecalciferol/administración & dosificación , Sistemas de Liberación de Medicamentos , Nanopartículas , Polímeros/química , Administración Cutánea , Animales , Química Farmacéutica/métodos , Colecalciferol/farmacocinética , Portadores de Fármacos/química , Estabilidad de Medicamentos , Femenino , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Poliésteres/química , Polietilenglicoles/química , Ácidos Polimetacrílicos/química , Absorción Cutánea , Electricidad Estática , Porcinos
18.
Environ Toxicol Pharmacol ; 53: 18-28, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28499266

RESUMEN

Degradation and body surface decontamination is vital to prevent the skin penetration of paraoxon (POX), an organophosphorus pesticide, and victims poisoning. CeO2 demonstrated a good efficacy for the degradation of POX. The aim of the study was to develop a model which includes the impact of weight of CeO2, POX and diluent volumes on the degradation kinetics. The modelling was realized with rapid and simple experiments carried out in tubes, in aqueous diluent which contained ions in order to be in accordance with in vitro skin decontamination conditions. CeO2 had degraded from 5% (in case of 7.5mmol of POX per gram of CeO2) to 100% (0.002mmol of POX per gram of CeO2) of POX. Different kinetic models were tested. Using the particle aggregation kinetic model, the simulated and experimental data were in a good accordance. It highlighted the importance of particles aggregation due to salts and consistency of the mix on the degradation efficiency of CeO2. The model worked also really well to predict the degradation efficiency of CeO2 powders during in vitro skin experiments. However, it did not correctly forecast with an aqueous decontaminant, containing CeO2.


Asunto(s)
Cerio/química , Descontaminación/métodos , Nanopartículas del Metal/química , Modelos Teóricos , Paraoxon/química , Plaguicidas/química , Animales , Técnicas In Vitro , Piel , Porcinos , Agua/química
19.
Int J Radiat Biol ; 93(6): 607-616, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28276896

RESUMEN

PURPOSE: To evaluate skin penetration and retention of americium (Am) and plutonium (Pu), in different chemical forms relevant to the nuclear industry and to treatment by chelation. MATERIALS AND METHODS: Percutaneous penetration of different Am and Pu forms were evaluated using viable pig skin with the Franz cell diffusion system. The behavior of the complex Pu-tributyl phosphate (Pu-TBP), Am or Pu complexed to the chelator Diethylene triamine pentaacetic acid (DTPA) and the effect of dimethyl sulfoxide (DMSO) was assessed. Radioactivity was measured in skin and receiver compartments. Three approaches were used to visualize activity in skin including the recent iQID technique for quantification. RESULTS: Transfer of Am was 24-fold greater than Pu and Pu-TBP complex penetration was enhanced by 500-fold. Actinide-DTPA transfer was greater than the Am or Pu alone (17-fold and 148-fold, respectively). The stratum corneum retained the majority of activity in all cases and both DMSO and TBP enhanced skin retention of Am and Pu, respectively. Histological and bioimaging data confirmed these results and the iQID camera allowed the quantification of skin activity. CONCLUSIONS: Skin penetration and fixation profiles are different depending on the chemical actinide form. Altered behavior of Pu-TBP and actinide-DTPA complexes reinforces the need to address decontamination protocols.


Asunto(s)
Elementos de Series Actinoides/farmacocinética , Quelantes/administración & dosificación , Absorción Cutánea/fisiología , Piel/efectos de los fármacos , Piel/metabolismo , Solventes/administración & dosificación , Absorción de Radiación/efectos de los fármacos , Absorción de Radiación/fisiología , Administración Tópica , Animales , Terapia por Quelación/métodos , Descontaminación/métodos , Técnicas In Vitro , Absorción Cutánea/efectos de los fármacos , Porcinos , Distribución Tisular/efectos de los fármacos
20.
Int J Pharm ; 518(1-2): 242-252, 2017 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-28007543

RESUMEN

In this work, the formation and stability of amorphous solid dispersions (SDs) as orodispersible films (ODF) were investigated using tetrabenazine (TBZ) as a poorly water soluble drug. The influence of polymer nature and pH-modifier incorporation to form and maintain SDs was investigated. TBZ-loaded ODF were formulated using 4 different polymers (HPMC, PVP, Pullulan, and HEC). Binary systems (BS) were obtained mixing the drug with different polymers, while ternary (TS) systems were also obtained by adding citric acid to solubilize TBZ in the mixture. Drug dissolution studies, thermal analysis and X-ray diffraction were carried out to characterize the physical state of API in ODF. ODF made of TS allowed a major improvement of TBZ dissolution profile in buccal conditions compared to a pure drug or BS. DSC and X-ray diffraction revealed that API was in amorphous state in TS while remained crystalline in BS. Following 6 months of storage, TBZ recrystallization occurred for PVP-TS and HEC-TS which induced a decrease of drug release in saliva conditions. HPMC and PUL-TS maintained API in amorphous state during 6 months. Briefly, amorphous SDs were obtained by the pre-dissolution of the drug in acidified water and incorporation in polymeric films. The miscibility and potential interaction between TBZ and polymers have been identified as important factor to explain stability differences.


Asunto(s)
Sistemas de Liberación de Medicamentos , Tetrabenazina/química , Rastreo Diferencial de Calorimetría , Ácido Cítrico/química , Estabilidad de Medicamentos , Glicerol/química , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Rastreo , Polímeros/química , Solubilidad , Sorbitol/química , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura de Transición , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...