Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Zookeys ; 1172: 61-100, 2023.
Article En | MEDLINE | ID: mdl-37538355

The DNA taxonomy of six species of the annelid family Lumbrineridae collected from the Clarion-Clipperton Zone (CCZ) in the Central Pacific, an area of potential mining interest for polymetallic nodules, is presented. Lumbrinerids are an ecologically important and understudied annelid family within the deep sea, with many species still undescribed. This study aims to document the taxonomy and biodiversity of the CCZ using specimens collected from the UK-1, OMS, and NORI-D exploration contract areas and Areas of Particular Environmental Interest. Species were identified through a combination of morphological and molecular phylogenetic analysis. We present informal species descriptions associated with voucher specimens, accessible through the Natural History Museum (London) collections, to improve future taxonomic and biodiversity studies of this region. Five taxa in this study had no morphological or genetic matches within the literature and therefore are possibly new to science, but their suboptimal morphological preservation prevented the formalisation of new species. The most abundant taxon Lumbrineridescf.laubieri (NHM_0020) was compared with the holotype of Lumbrinerideslaubieri Miura, 1980 from the deep Northeast Atlantic. Currently no reliable morphological characters separating the Pacific and Atlantic specimens have been found and molecular data from the Atlantic specimens was not available.

2.
Nat Ecol Evol ; 7(9): 1388-1397, 2023 09.
Article En | MEDLINE | ID: mdl-37488225

Abyssal seafloor communities cover more than 60% of Earth's surface. Despite their great size, abyssal plains extend across modest environmental gradients compared to other marine ecosystems. However, little is known about the patterns and processes regulating biodiversity or potentially delimiting biogeographical boundaries at regional scales in the abyss. Improved macroecological understanding of remote abyssal environments is urgent as threats of widespread anthropogenic disturbance grow in the deep ocean. Here, we use a new, basin-scale dataset to show the existence of clear regional zonation in abyssal communities across the 5,000 km span of the Clarion-Clipperton Zone (northeast Pacific), an area targeted for deep-sea mining. We found two pronounced biogeographic provinces, deep and shallow-abyssal, separated by a transition zone between 4,300 and 4,800 m depth. Surprisingly, species richness was maintained across this boundary by phylum-level taxonomic replacements. These regional transitions are probably related to calcium carbonate saturation boundaries as taxa dependent on calcium carbonate structures, such as shelled molluscs, appear restricted to the shallower province. Our results suggest geochemical and climatic forcing on distributions of abyssal populations over large spatial scales and provide a potential paradigm for deep-sea macroecology, opening a new basis for regional-scale biodiversity research and conservation strategies in Earth's largest biome.


Biodiversity , Ecosystem , Calcium Carbonate , Carbonates
3.
Curr Biol ; 33(12): 2383-2396.e5, 2023 06 19.
Article En | MEDLINE | ID: mdl-37236182

The global surge in demand for metals such as cobalt and nickel has created unprecedented interest in deep-sea habitats with mineral resources. The largest area of activity is a 6 million km2 region known as the Clarion-Clipperton Zone (CCZ) in the central and eastern Pacific, regulated by the International Seabed Authority (ISA). Baseline biodiversity knowledge of the region is crucial to effective management of environmental impact from potential deep-sea mining activities, but until recently this has been almost completely lacking. The rapid growth in taxonomic outputs and data availability for the region over the last decade has allowed us to conduct the first comprehensive synthesis of CCZ benthic metazoan biodiversity for all faunal size classes. Here we present the CCZ Checklist, a biodiversity inventory of benthic metazoa vital to future assessments of environmental impacts. An estimated 92% of species identified from the CCZ are new to science (436 named species from a total of 5,578 recorded). This is likely to be an overestimate owing to synonyms in the data but is supported by analysis of recent taxonomic studies suggesting that 88% of species sampled in the region are undescribed. Species richness estimators place total CCZ metazoan benthic diversity at 6,233 (+/-82 SE) species for Chao1, and 7,620 (+/-132 SE) species for Chao2, most likely representing lower bounds of diversity in the region. Although uncertainty in estimates is high, regional syntheses become increasingly possible as comparable datasets accumulate. These will be vital to understanding ecological processes and risks of biodiversity loss.


Biodiversity , Invertebrates , Oceans and Seas , Animals , Invertebrates/classification , Marine Biology , Pacific Ocean , Geologic Sediments
4.
Biodivers Data J ; 11: e86921, 2023.
Article En | MEDLINE | ID: mdl-38327336

Background: We present a checklist of annelids from recent United Kingdom Seabed Resources (UKSR) expeditions (Abyssal Baseline - ABYSSLINE project) to the eastern abyssal Pacific Clarion-Clipperton Zone (CCZ) polymetallic nodule fields, based on DNA species delimitation, including imagery of voucher specimens, Darwin Core (DwC) data and links to vouchered specimen material and new GenBank sequence records. This paper includes genetic and imagery data for 129 species of annelids from 339 records and is restricted to material that is, in general, in too poor a condition to describe formally at this time, but likely contains many species new to science. We make these data available both to aid future taxonomic studies in the CCZ that will be able to link back to these genetic data and specimens and to better underpin ongoing ecological studies of potential deep-sea mining impacts using the principles of FAIR (Findable, Accessible, Interoperable, Reusuable) data and specimens that will be available for all. New information: We include genetic, imagery and all associated metadata in Darwin Core format for 129 species of annelids from the Clarion-Clipperton Zone, eastern abyssal Pacific, with 339 records.

5.
Zookeys ; 1137: 33-74, 2022.
Article En | MEDLINE | ID: mdl-36760485

This is a contribution in a series of taxonomic publications on benthic fauna of polymetallic nodule fields in the eastern abyssal Clarion-Clipperton Zone (CCZ). The material was collected during environmental surveys targeting exploration contract areas 'UK-1', 'OMS' and 'NORI-D', as well as an Area of Particular Environmental Interest, 'APEI-6'. The annelid families Amphinomidae and Euphrosinidae are investigated here. Taxonomic data are presented for six species from 41 CCZ-collected specimens as identified by a combination of morphological and genetic approaches; of the six species, three are here described as new, one species is likely to be new but in too poor condition to be formalised and the two others likely belong to known species. Description of three new species Euphrosinellageorgievae sp. nov., Euphrosinopsisahearni sp. nov., and Euphrosinopsishalli sp. nov. increases the number of formally described new annelid species from the targeted areas to 21 and CCZ-wide to 52. Molecular data suggest that four of the species reported here are known from CCZ only, but within CCZ they have a wide distribution. In contrast, the species identified as Bathychloeiacf.sibogae Horst, 1910 was found to have a wide distribution within the Pacific based on both morphological and molecular data, using comparative material from the abyssal South Pacific. Bathychloeiacf.balloniformis Böggemann, 2009 was found to be restricted to APEI-6 based on DNA data available from CCZ specimens only, but morphological data from other locations suggest potentially a wide abyssal distribution. The genus Euphrosinopsis was previously known only from Antarctic waters, and Euphrosinellageorgievae sp. nov. was recovered as a sister taxon to the Antarctic specimens of Euphrosinellacf.cirratoformis in our molecular phylogenetic analysis, strengthening the hypothesised link between the deep-sea and Antarctic benthic fauna.

6.
Zookeys ; 1113: 1-110, 2022.
Article En | MEDLINE | ID: mdl-36762231

There is a growing interest in the exploitation of deep-sea mineral deposits, particularly on the abyssal seafloor of the central Pacific Clarion-Clipperton Zone (CCZ), which is rich in polymetallic nodules. In order to effectively manage potential exploitation activities, a thorough understanding of the biodiversity, community structure, species ranges, connectivity, and ecosystem functions across a range of scales is needed. The benthic megafauna plays an important role in the functioning of deep-sea ecosystems and represents an important component of the biodiversity. While megafaunal surveys using video and still images have provided insight into CCZ biodiversity, the collection of faunal samples is needed to confirm species identifications to accurately estimate species richness and species ranges, but faunal collections are very rarely carried out. Using a Remotely Operated Vehicle, 55 specimens of benthic megafauna were collected from seamounts and abyssal plains in three Areas of Particular Environmental Interest (APEI 1, APEI 4, and APEI 7) at 3100-5100 m depth in the western CCZ. Using both morphological and molecular evidence, 48 different morphotypes belonging to five phyla were found, only nine referrable to known species, and 39 species potentially new to science. This work highlights the need for detailed taxonomic studies incorporating genetic data, not only within the CCZ, but in other bathyal, abyssal, and hadal regions, as representative genetic reference libraries that could facilitate the generation of species inventories.

7.
Mol Phylogenet Evol ; 136: 151-163, 2019 07.
Article En | MEDLINE | ID: mdl-30981811

Caves are a useful system for testing evolutionary and biogeographic hypotheses, as they are isolated, and their environmental conditions have resulted in adaptive selection across different taxa. Although in recent years many more cave species have been discovered, cave-dwelling members of the class Ophiuroidea (brittle stars) remain scarce. Out of the more than two thousand species of brittle stars described to date, only three are regarded as true cave-dwellers. These occurrences represent rare colonising events, compared to other groups that are known to have successfully diversified in these systems. A third species from an anchihaline cave system in the Yucatan Peninsula, Mexico, has been previously identified from cytochrome oxidase I (COI) barcodes. In this study, we reassess the species boundaries of this putative cave species using a phylogenomic dataset (20 specimens in 13 species, 100 exons, 18.7 kbp). We perform species delimitation analyses using robust full-coalescent methods for discovery and validation of hypotheses on species boundaries, as well as infer its phylogenetic relationships with species distributed in adjacent marine regions, in order to investigate the origin of this cave-adapted species. We assess which hypotheses on the origin of subterranean taxa can be applied to this species by taking into account its placement within the genus Ophionereis and its demographic history. We provide a detailed description of Ophionereis commutabilis n. sp., and evaluate its morphological characters in the light of its successful adaptation to life in caves.


Caves , Echinodermata/classification , Echinodermata/genetics , Phylogeny , Animals , Geography , Mexico , Species Specificity
8.
Nature ; 565(7741): 636-639, 2019 01.
Article En | MEDLINE | ID: mdl-30675065

Our knowledge of the distribution and evolution of deep-sea life is limited, impeding our ability to identify priority areas for conservation1. Here we analyse large integrated phylogenomic and distributional datasets of seafloor fauna from the sea surface to the abyss and from equator to pole of the Southern Hemisphere for an entire class of invertebrates (Ophiuroidea). We find that latitudinal diversity gradients are assembled through contrasting evolutionary processes for shallow (0-200 m) and deep (>200 m) seas. The shallow-water tropical-temperate realm broadly reflects a tropical diversification-driven process that shows exchange of lineages in both directions. Diversification rates are reversed for the realm that contains the deep sea and Antarctica; the diversification rates are highest at polar and lowest at tropical latitudes, and net exchange occurs from high to low latitudes. The tropical upper bathyal (200-700 m deep), with its rich ancient phylodiversity, is characterized by relatively low diversification and moderate immigration rates. Conversely, the young, specialized Antarctic fauna is inferred to be rebounding from regional extinctions that are associated with the rapid cooling of polar waters during the mid-Cenozoic era.


Biodiversity , Geologic Sediments , Oceans and Seas , Phylogeny , Animal Migration , Animals
9.
Mol Phylogenet Evol ; 130: 67-80, 2019 01.
Article En | MEDLINE | ID: mdl-30308280

Brittlestars in the family Ophiocomidae are large and colourful inhabitants of tropical shallow water habitats across the globe. Here we use targeted capture and next-generation sequencing to generate robust phylogenomic trees for 39 of the 43 species in order to test the monophyly of existing genera. The large genus Ophiocoma, as currently constituted, is paraphyletic on our trees and required revision. Four genera are recognised herein: an expanded Ophiomastix (now including Ophiocoma wendtii, O. occidentalis, O. endeani, O. macroplaca, and Ophiarthrum spp), Ophiocomella (now including the non-fissiparous Ophiocoma pumila, aethiops and valenciae) and Breviturma (now including Ophiocoma pica, O. pusilla, O. paucigranulata and O. longispina) and a restricted Ophiocoma. The resulting junior homonym Ophiomastix elegans is renamed O. brocki. The genus Ophiomastix exhibits relatively high rates of morphological disparity compared to other lineages. Ophiomastix flaccida and O. (formerly Ophiarthrum) pictum have divergent mitochondrial genomes, characterised by gene-order rearrangements, strand recoding, enriched GT base composition, and a corresponding divergence of nuclear mitochondrial protein genes. The new phylogeny indicates that larval and developmental transitions occurred rarely. Larval culture trials show that species with abbreviated lecithotrophic larval development occur only within Ophiomastix, although the possible monophyly of these species is obscured by the rapid early radiation within this genus. Asexual reproduction by fission is limited to one species-complex within Ophiocomella, also characterised by elevated levels of allelic heterozygosity, and which has achieved a relatively rapid global distribution. The crown ages of the new genera considerably predate the closure of the Tethyan seaway and all four are distributed in both the Atlantic and Indo-Pacific Oceans. Two species pairs appear to reflect the closure of the Panama Seaway, although their fossil-calibrated node ages (12-14 ±â€¯6 my), derived from both concatenated sequence and multispecies coalescent analyses, considerably predate the terminal closure event. Ophiocoma erinaceus has crossed the East Pacific barrier and is recorded from Clipperton Island, SW of Mexico.


Echinodermata/anatomy & histology , Echinodermata/classification , Evolution, Molecular , Phylogeny , Animals , Atlantic Ocean , Echinodermata/genetics , Environment , Fossils , Genes, Mitochondrial/genetics , Pacific Ocean , Sequence Analysis, DNA , Species Specificity
10.
Proc Biol Sci ; 284(1858)2017 Jul 12.
Article En | MEDLINE | ID: mdl-28679721

Our knowledge of macro-evolutionary processes in the deep sea is poor, leading to much speculation about whether the deep sea is a source or sink of evolutionary adaptation. Here, we use a phylogenetic approach, on large molecular (688 species, 275 kbp) and distributional datasets (104 513 records) across an entire class of marine invertebrates (Ophiuroidea), to infer rates of bathymetric range shift over time between shallow and deep water biomes. Biome conservation is evident through the phylogeny, with the majority of species in most clades distributed within the same bathome. Despite this, bathymetric shifts have occurred. We inferred from ancestral reconstructions that eurybathic or intermediate distributions across both biomes were a transitional state and direct changes between shallow and deep sea did not occur. The macro-evolutionary pattern of bathome shift appeared to reflect micro-evolutionary processes of bathymetric speciation. Results suggest that most of the oldest clades have a deep-sea origin, but multiple colonization events indicate that the evolution of this group conforms neither to a simple onshore-offshore hypothesis, nor the opposite pattern. Both shallow and deep bathomes have played an important role in generating the current diversity of this major benthic class.


Biological Evolution , Echinodermata/classification , Phylogeny , Animals
11.
Mol Ecol Resour ; 13(6): 1137-45, 2013 Nov.
Article En | MEDLINE | ID: mdl-23551841

The echinoderm species richness of the Aerolito de Paraiso anchialine cave, on Cozumel Island, in the Mexican Caribbean, is assessed on the basis of morphological and DNA barcoding data. We included specimens from this cave system and from different open sea areas, and employed two different approaches for species delineation based on DNA barcoding data: a 2% cox1 divergence and the general mixed Yule-coalescent (GMYC) approaches. We subsequently compared the results derived from these approaches with our morphospecies discrimination. A total of 188 cox1 sequences belonging to specimens of four echinoderm classes were examined. The 2% cox1 divergence and GMYC approaches recovered 78 and 70 putative species, respectively, 24 and 22 of which corresponded to specimens from the anchialine system. Of 26 echinoderm species identified in the cave system, seven appear to be endemic to it. Among these are Copidaster carvenicola Solís-Marín & Laguarda-Figueras, 2010, two morphologically distinctive, undescribed species belonging to Asterinides and Ophionereis and four probably cryptic undescribed species originally assigned to Amphipholis squamata (Delle Chiaje, 1839), Astropecten duplicatus Gray, 1840, Copidaster lymani (AH Clark, 1948) and Ophiothrix angulata (Say, 1825). Further research and protection of this particularly fragile ecosystem becomes urgent because construction of tourism developments is planned nearby.


Biodiversity , DNA Barcoding, Taxonomic , Echinodermata/genetics , Animals , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/classification , Echinodermata/classification , Mexico , Molecular Sequence Data
...