Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Meteorit Planet Sci ; 58(1): 41-62, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37082523

RESUMEN

Askival is a light-toned, coarsely crystalline float rock, which was identified near the base of Vera Rubin Ridge in Gale crater. We have studied Askival, principally with the ChemCam instrument but also using APXS compositional data and MAHLI images. Askival and an earlier identified sample, Bindi, represent two rare examples of feldspathic cumulate float rocks in Gale crater with >65% relict plagioclase. Bindi appears unaltered whereas Askival shows textural and compositional signatures of silicification, along with alkali remobilization and hydration. Askival likely experienced multiple stages of alteration, occurring first through acidic hydrolysis of metal cations, followed by deposition of silica and possible phyllosilicates at low T and neutral-alkaline pH. Through laser-induced breakdown spectroscopy compositional analyses and normative calculations, we suggest that an assemblage of Fe-Mg silicates including amphibole and pyroxene, Fe phases, and possibly Mg-rich phyllosilicate are present. Thermodynamic modeling of the more pristine Bindi composition predicts that amphibole and feldspar are stable within an upper crustal setting. This is consistent with the presence of amphibole in the parent igneous rocks of Askival and suggests that the paucity of amphiboles in other known Martian samples reflects the lack of representative samples of the Martian crust rather than their absence on Mars.

2.
Nat Astron ; 7(2): 170-181, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845884

RESUMEN

Without a protective atmosphere, space-exposed surfaces of airless Solar System bodies gradually experience an alteration in composition, structure and optical properties through a collective process called space weathering. The return of samples from near-Earth asteroid (162173) Ryugu by Hayabusa2 provides the first opportunity for laboratory study of space-weathering signatures on the most abundant type of inner solar system body: a C-type asteroid, composed of materials largely unchanged since the formation of the Solar System. Weathered Ryugu grains show areas of surface amorphization and partial melting of phyllosilicates, in which reduction from Fe3+ to Fe2+ and dehydration developed. Space weathering probably contributed to dehydration by dehydroxylation of Ryugu surface phyllosilicates that had already lost interlayer water molecules and to weakening of the 2.7 µm hydroxyl (-OH) band in reflectance spectra. For C-type asteroids in general, this indicates that a weak 2.7 µm band can signify space-weathering-induced surface dehydration, rather than bulk volatile loss.

3.
Astrobiology ; 21(4): 464-480, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33646016

RESUMEN

The European Space Agency and Roscosmos' ExoMars rover mission, which is planned to land in the Oxia Planum region, will be dedicated to exobiology studies at the surface and subsurface of Mars. Oxia Planum is a clay-bearing site that has preserved evidence of long-term interaction with water during the Noachian era. Fe/Mg-rich phyllosilicates have previously been shown to occur extensively throughout the landing area. Here, we analyze data from the High Resolution Imaging Science Experiment (HiRISE) and from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instruments onboard NASA's Mars Reconnaissance Orbiter and the Colour and Stereo Surface Imaging System (CaSSIS) onboard ESA's Trace Gas Orbiter to characterize, at a high spatial resolution, the morphological and spectral variability of Oxia Planum's surface deposits. Two main types of bedrocks are identified within the clay-bearing, fractured unit observed throughout the landing site: (1) an orange type in HiRISE correlated with the strongest detections of secondary minerals (dominated by Fe/Mg-rich clay minerals) with, in some locations, an additional spectral absorption near 2.5 µm, suggesting the mixture with an additional mineral, plausibly carbonate or another type of clay mineral; (2) a more bluish bedrock associated with weaker detections of secondary minerals, which exhibits at certain locations a ∼1 µm broad absorption feature consistent with olivine. Coanalysis of the same terrains with the recently acquired CaSSIS images confirms the variability in the color and spectral properties of the fractured unit. Of interest for the ExoMars mission, both types of bedrocks are extensively outcropping in the Oxia Planum region, and the one corresponding to the most intense spectral signals of clay minerals (the primary scientific target) is well exposed within the landing area, including near its center.


Asunto(s)
Medio Ambiente Extraterrestre , Marte , Arcilla , Exobiología , Minerales , Agua
4.
Microorganisms ; 6(3)2018 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-29966361

RESUMEN

Evidence indicates that Gale crater on Mars harboured a fluvio-lacustrine environment that was subjected to physio-chemical variations such as changes in redox conditions and evaporation with salinity changes, over time. Microbial communities from terrestrial environmental analogues sites are important for studying such potential habitability environments on early Mars, especially in laboratory-based simulation experiments. Traditionally, such studies have predominantly focused on microorganisms from extreme terrestrial environments. These are applicable to a range of Martian environments; however, they lack relevance to the lacustrine systems. In this study, we characterise an anoxic inter-tidal zone as a terrestrial analogue for the Gale crater lake system according to its chemical and physical properties, and its microbiological community. The sub-surface inter-tidal environment of the River Dee estuary, United Kingdom (53°21'15.40″ N, 3°10'24.95″ W) was selected and compared with available data from Early Hesperian-time Gale crater, and temperature, redox, and pH were similar. Compared to subsurface 'groundwater'-type fluids invoked for the Gale subsurface, salinity was higher at the River Dee site, which are more comparable to increases in salinity that likely occurred as the Gale crater lake evolved. Similarities in clay abundance indicated similar access to, specifically, the bio-essential elements Mg, Fe and K. The River Dee microbial community consisted of taxa that were known to have members that could utilise chemolithoautotrophic and chemoorganoheterotrophic metabolism and such a mixed metabolic capability would potentially have been feasible on Mars. Microorganisms isolated from the site were able to grow under environment conditions that, based on mineralogical data, were similar to that of the Gale crater's aqueous environment at Yellowknife Bay. Thus, the results from this study suggest that the microbial community from an anoxic inter-tidal zone is a plausible terrestrial analogue for studying habitability of fluvio-lacustrine systems on early Mars, using laboratory-based simulation experiments.

5.
Am Mineral ; 100(4): 824-836, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28798492

RESUMEN

The Mars Science Laboratory (MSL) rover Curiosity has documented a section of fluvio-lacustrine strata at Yellowknife Bay (YKB), an embayment on the floor of Gale crater, approximately 500 m east of the Bradbury landing site. X-ray diffraction (XRD) data and evolved gas analysis (EGA) data from the CheMin and SAM instruments show that two powdered mudstone samples (named John Klein and Cumberland) drilled from the Sheepbed member of this succession contain up to ~20 wt% clay minerals. A trioctahedral smectite, likely a ferrian saponite, is the only clay mineral phase detected in these samples. Smectites of the two samples exhibit different 001 spacing under the low partial pressures of H2O inside the CheMin instrument (relative humidity <1%). Smectite interlayers in John Klein collapsed sometime between clay mineral formation and the time of analysis to a basal spacing of 10 Å, but largely remain open in the Cumberland sample with a basal spacing of ~13.2 Å. Partial intercalation of Cumberland smectites by metal-hydroxyl groups, a common process in certain pedogenic and lacustrine settings on Earth, is our favored explanation for these differences. The relatively low abundances of olivine and enriched levels of magnetite in the Sheepbed mudstone, when compared with regional basalt compositions derived from orbital data, suggest that clay minerals formed with magnetite in situ via aqueous alteration of olivine. Mass-balance calculations are permissive of such a reaction. Moreover, the Sheepbed mudstone mineral assemblage is consistent with minimal inputs of detrital clay minerals from the crater walls and rim. Early diagenetic fabrics suggest clay mineral formation prior to lithification. Thermodynamic modeling indicates that the production of authigenic magnetite and saponite at surficial temperatures requires a moderate supply of oxidants, allowing circum-neutral pH. The kinetics of olivine alteration suggest the presence of fluids for thousands to hundreds of thousands of years. Mineralogical evidence of the persistence of benign aqueous conditions at YKB for extended periods indicates a potentially habitable environment where life could establish itself. Mediated oxidation of Fe2+ in olivine to Fe3+ in magnetite, and perhaps in smectites provided a potential energy source for organisms.

6.
Science ; 347(6220): 415-7, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25515120

RESUMEN

Reports of plumes or patches of methane in the martian atmosphere that vary over monthly time scales have defied explanation to date. From in situ measurements made over a 20-month period by the tunable laser spectrometer of the Sample Analysis at Mars instrument suite on Curiosity at Gale crater, we report detection of background levels of atmospheric methane of mean value 0.69 ± 0.25 parts per billion by volume (ppbv) at the 95% confidence interval (CI). This abundance is lower than model estimates of ultraviolet degradation of accreted interplanetary dust particles or carbonaceous chondrite material. Additionally, in four sequential measurements spanning a 60-sol period (where 1 sol is a martian day), we observed elevated levels of methane of 7.2 ± 2.1 ppbv (95% CI), implying that Mars is episodically producing methane from an additional unknown source.

7.
Science ; 314(5806): 1716-9, 2006 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17170290

RESUMEN

Particles emanating from comet 81P/Wild 2 collided with the Stardust spacecraft at 6.1 kilometers per second, producing hypervelocity impact features on the collector surfaces that were returned to Earth. The morphologies of these surprisingly diverse features were created by particles varying from dense mineral grains to loosely bound, polymineralic aggregates ranging from tens of nanometers to hundreds of micrometers in size. The cumulative size distribution of Wild 2 dust is shallower than that of comet Halley, yet steeper than that of comet Grigg-Skjellerup.

8.
Science ; 314(5806): 1711-6, 2006 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-17170289

RESUMEN

The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study. The preliminary examination of these samples shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin. The comet contains an abundance of silicate grains that are much larger than predictions of interstellar grain models, and many of these are high-temperature minerals that appear to have formed in the inner regions of the solar nebula. Their presence in a comet proves that the formation of the solar system included mixing on the grandest scales.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...