Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Inflamm Res ; 14: 3823-3835, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34408465

RESUMEN

BACKGROUND: Interleukin-33 (IL-33) is an alarmin that is released following cellular damage, mechanical injury, or necrosis. It is a member of the IL-1 family and binds to a heterodimer receptor consisting of ST2 and IL-1RAP to induce the production of a wide range of cellular mediators, including the type 2 cytokines IL-4, IL-5 and IL-13. This relationship has led to the hypothesis that the IL-33/ST2 pathway is a driver of allergic disease and inhibition of the IL-33 and ST2 association could have therapeutic benefit. METHODS: In this paper, we describe the selection of a phage antibody through the ability to bind human IL-33 and block IL-33/ST2 interaction. This hit antibody was then affinity matured by site-directed mutagenesis of the antibody complementarity-determining regions (CDRs). Further characterization of a fully human monoclonal antibody (mAb), torudokimab (LY3375880) included demonstration of human IL-33 neutralization activity in vitro with an NFκB reporter assay and IL-33 induced mast cell cytokine secretion assay, followed by an in vivo IL-33-induced pharmacodynamic inhibition assay in mice that used IL-5 production as the endpoint. RESULTS: Torudokimab is highly specific to IL-33 and does not bind any of the other IL-1 family members. Furthermore, torudokimab binds human and cynomolgus monkey IL-33 with higher affinity than the binding affinity of IL-33 to ST2, but does not bind mouse, rat, or rabbit IL-33. Torudokimab's half-life in cynomolgous monkey projects monthly dosing in the clinic. CONCLUSION: Due to torudokimab's high affinity, its ability to completely neutralize IL-33 activity in vitro and in vivo, and the observed cynomolgus monkey pharmacokinetic properties, this molecule was selected for clinical development.

2.
J Immunol Methods ; 466: 9-16, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30590020

RESUMEN

IL-21 is a pleiotropic cytokine that plays a key role in modulating inflammatory responses, including the promotion of autoimmune diseases. Several groups have quantitated circulating levels of IL-21 in plasma and serum samples using various commercial ELISAs. We determined, however, that the most commonly used commercial assays in published literature were not specific or sensitive enough to detect levels of IL-21 in heparin plasma or serum from healthy human individuals. This finding prompted an effort to develop more specific and sensitive methods to quantitate IL-21 in complex biological matrices using proprietary anti-IL-21 antibodies with the Quanterix SiMoA platform and the Meso Scale Discovery (MSD) S-PLEX® format. Assays developed on both technology platforms were characterized in heparin plasma and serum using spike recoveries across a range of concentrations. Each method was able to detect sub-pg/mL levels of IL-21 (predicted Limit of Detection [LOD] of approximately 1.0 fg/mL for both the Quanterix SiMoA and MSD S-PLEX® platforms) which is 200-500 times lower than current commercial assays. Additionally we demonstrated that rheumatoid factor did not interfere with measuring IL-21 in the Quanterix SiMoA assay. Results obtained with the two new ultrasensitive assays showed a strong correlation (r = 0.9428; p < .0001). Additionally, IL-21 levels were significantly increased in samples from patients with Systemic Lupus Erythematosus (mean+/- SD: n = 14, 202.64 +/- 111.47 fg/mL, p = .0001 for Quanterix SiMoA and 275.4 +/- 174.66 fg/mL p = .0001 for MSD S-PLEX®) as well as in samples from patients with Sjögren's Syndrome (mean+/- SD: n = 11, 122.18 +/- 84.50 fg/mL, p = .0029 for Quanterix SiMoA and 183.64 +/- 153.00 fg/mL, p = .0082 for MSD S-PLEX®) when compared to healthy donors (mean+/- SD: n = 11, 38.1 +/- 27.8 fg/mL for Quanterix SiMoA and 58.1 +/- 30.7 fg/mL for MSD S-PLEX®). These ultrasensitive assays, for the first time, allow for the accurate quantitation of human IL-21 in heparin plasma and serum. In addition, these experiments also provide a direct comparison of the MSD S-PLEX® format and Quanterix SiMoA platform technologies, which may have broader implications to future application of these methods to evaluate low abundance proteins in complex biological matrices.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática , Interleucinas/sangre , Voluntarios Sanos , Humanos , Interleucinas/inmunología
3.
J Cell Physiol ; 215(1): 1-7, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18064602

RESUMEN

Fibroblast growth factor-21 (FGF-21) is a metabolic regulator that can influence glucose and lipid control in diabetic rodents and primates. We demonstrate that betaKlotho is an integral part of an activated FGF-21-betaKlotho-FGF receptor (FGFR) complex thus a critical subunit of the FGF-21 receptor. Cells lacking betaKlotho did not respond to FGF-21; the introduction of betaKlotho to these cells conferred FGF-21-responsiveness and recapitulated the entire scope of FGF-21 signaling observed in naturally responsive cells. Interestingly, FGF-21-mediated effects are heparin independent suggesting that betaKlotho plays a role in FGF-21 activity similar to the one played by heparin in the signaling of conventional FGFs. Moreover, in addition to conferring specificity for FGF-21, betaKlotho appears to support FGF-19 activity and mediates the receptor selectivity profile of FGF-19. All together, these results indicate that betaKlotho and FGFRs form the cognate FGF-21 receptor complex, mediating FGF-21 cellular specificity and physiological effects.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Células 3T3-L1 , Animales , Factores de Crecimiento de Fibroblastos/farmacología , Humanos , Proteínas Klotho , Ratones , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...