Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Kidney Int ; 102(4): 750-765, 2022 10.
Article En | MEDLINE | ID: mdl-35643373

Chronic Cyclosporine-A treatment is associated with serious side effects, including kidney toxicity and anemia. Although pathophysiology of Cyclosporine-A-induced kidney injury remains incompletely understood, hypoxia is likely involved. Here, we investigated the effect of the hypoxia inducible factor activator daprodustat on Cyclosporine-A -induced kidney toxicity. As Cyclosporine-A profoundly alters protein phosphorylation by inhibiting the phosphatase calcineurin, special attention was directed towards the kidney phospho-proteome. Mice received Cyclosporine-A with or without daprodustat for up to eight weeks. In kidney homogenates, 1360 selected proteins were analyzed at expression and phosphorylation levels. Of these, Cyclosporine-A changed the expression of 79 and the phosphorylation of 86 proteins. However, when Cyclosporine-A treatment was combined with daprodustat, the expression of 95 proteins and phosphorylation of only six proteins was altered suggesting that daprodustat prevented most protein phosphorylation brought about by Cyclosporine-A. Although daprodustat showed only marginal effect on its own, angiogenesis-related pathways were among the most profoundly impacted by daprodustat when given on top of Cyclosporine-A. Additionally, Cyclosporine-A lowered the blood hemoglobin concentration and caused kidney capillary rarefaction, which daprodustat prevented. Thus, combined daprodustat/Cyclosporine-A treatment prevented deleterious Cyclosporine-A effects on microcirculation and hemoglobin, and the protective action of daprodustat involves suppression of broad protein phosphorylation changes caused by Cyclosporine-A.


Anemia , Cyclosporine , Anemia/chemically induced , Anemia/prevention & control , Animals , Barbiturates , Calcineurin , Cyclosporine/toxicity , Glycine/analogs & derivatives , Hemoglobins/metabolism , Hypoxia/complications , Mice , Proteome
2.
J Med Genet ; 59(11): 1035-1043, 2022 11.
Article En | MEDLINE | ID: mdl-35115415

BACKGROUND: Nephrolithiasis (NL) is a complex multifactorial disease affecting up to 10%-20% of the human population and causing a significant burden on public health systems worldwide. It results from a combination of environmental and genetic factors. Hyperoxaluria is a major risk factor for NL. METHODS: We used a whole exome-based approach in a patient with calcium oxalate NL. The effects of the mutation were characterised using cell culture and in silico analyses. RESULTS: We identified a rare heterozygous missense mutation (c.1519C>T/p.R507W) in the SLC26A6 gene that encodes a secretory oxalate transporter. This mutation cosegregated with hyperoxaluria in the family. In vitro characterisation of mutant SLC26A6 demonstrated that Cl--dependent oxalate transport was dramatically reduced because the mutation affects both SLC26A6 transport activity and membrane surface expression. Cotransfection studies demonstrated strong dominant-negative effects of the mutant on the wild-type protein indicating that the phenotype of patients heterozygous for this mutation may be more severe than predicted by haploinsufficiency alone. CONCLUSION: Our study is in line with previous observations made in the mouse showing that SLC26A6 inactivation can cause inherited enteric hyperoxaluria with calcium oxalate NL. Consistent with an enteric form of hyperoxaluria, we observed a beneficial effect of increasing calcium in the patient's diet to reduce urinary oxalate excretion.


Antiporters , Hyperoxaluria , Nephrolithiasis , Sulfate Transporters , Humans , Antiporters/genetics , Calcium/metabolism , Calcium Oxalate/metabolism , Hyperoxaluria/complications , Hyperoxaluria/genetics , Mutation , Nephrolithiasis/genetics , Nephrolithiasis/complications , Nephrolithiasis/metabolism , Oxalates/metabolism , Sulfate Transporters/genetics
...