Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Phys ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38772041

RESUMEN

BACKGROUND: The use of electron beams has been rekindled by the advent of ultra-high-dose rate radiotherapy (FLASH) and very high energy electrons (VHEE). The need for development of novel technology for beam monitoring and dosimetry of such beams is of paramount importance prior to their clinical translation. PURPOSE: In this work we explore the potential of a multi-layer nanoporous aerogel High-Energy-Current (HEC) detector as a dosimeter for electron beam. The detector does not suffer from radiation damage or signal saturation, making it suitable for very-high-dose-rate applications. Standard dose rates and energies are used to establish reference for FLASH and VHEE. We explore detector response to electron energy and residual range both experimentally and computationally. METHODS: Multilayer HEC detectors were constructed using 1×-10× basic modules of Aluminum(Al)_aerogel(A)_Tantalum(Ta) with 10-70 µm layer thicknesses. Signals are collected from all electrodes (3-21, depending on module multiplicity) with zero external voltage bias. Measurements are acquired as a function of depth(z) in water equivalent plastic using Varian TrueBeam for energies E = 6,9,12,15 MeV (SAD = 105 cm, 6 × 6 cone, 1000 MU/min). Computational simulations of identical detector geometries are performed using the 1D deterministic code CEPXS/ONEDANT. Additionally, percent-depth-doses PDD(z), measured with diode in water, are used to explore the response of HEC for various energies and residual ranges. RESULTS: The current measured from Ta electrodes resembles the shape of deposited charges in water and it is proportional to the derivative of the clinical PDD corrected for contribution from photon contamination. The signal is positive on the surface, and it decreases with depth reaching a negative local minimum at z = R50, before increasing again, reaching zero at about the practical range z = Rp. In contrast, the signal from Al electrodes is shaped like the electron PDD(z) shape but with lower signal at the surface and higher bremsstrahlung tail. By subtracting the signal from Ta and Al electrodes we obtained a curve resembling PDD(z,E) after Bremsstrahlung contamination correction. CONCLUSIONS: Multi-layer HEC sensors exhibit characteristic responses to electron beams that are unlike responses of ion chambers or diodes. Since the sensor structures are sensitive to electronic disequilibrium, high-Z electrodes give a signal proportional to the charge deposition pattern and can be modeled using the derivative of PDD(z).

2.
Sensors (Basel) ; 24(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38676161

RESUMEN

PURPOSE: We investigated the characteristics of radiation-induced current in nano-porous pellet and thin-film anodized tantalum exposed to kVp X-ray beams. We aim at developing a large area (≫cm2) thin-film radiation sensor for medical, national security and space applications. METHODS: Large area (few cm2) micro-thin Ta foils were anodized and coated with a counter electrode made of conductive polymer. In addition, several types of commercial electrolytic porous tantalum capacitors were assembled and prepared for irradiation with kVp X-rays. We measured dark current (leakage) as well as transient radiation-induced currents as a function of external voltage bias. RESULTS: Large transient currents (up to 50 nA) under X-ray irradiation (dose rate of about 3 cGy/s) were measured in Ta2O5 capacitors. Small nano-porous Ta and large-area flat Ta foil capacitors show similar current-voltage characteristic curve after accounting for different X-ray attenuation in capacitor geometry. The signal is larger for thicker capacitor oxide. A non-negligible signal for null external voltage bias is observed, which is explained by fast electron production in Ta foils. CONCLUSIONS: Anodized tantalum is a promising material for use in large-area, self-powered radiation sensors for X-ray detection and for energy harvesting.

3.
Biomed Phys Eng Express ; 10(2)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38306969

RESUMEN

Objective.In this feasibility study, we explore an application of a Resistive Electrode Array (REA) for localization of a radioactive point source. The inverse problem posed by multichannel REA detection is studied from mathematical perspective and involves the questions of the minimal configuration of the conductive leads that can achieve this goal. The basic configuration consists of a circularly shaped REA with four opposite electrical lead-pairs at its perimeter.Approach.A robust mathematical reconstruction method for a 3D radioactive source relative to the REA is presented. The characteristic empirical Green's function for the detector response of the REA is determined by numerically solving Laplace equations with appropriate boundary conditions. Based on this model, Monte Carlo simulations of the inverse problem with Gaussian noise are performed and the overall accuracy of the localization is investigated.Main results.The results show a 3D error distribution of localization which is uniform in the (x,y)-plane of the REA and strongly correlated in the orthogonalz-axis. The overall accuracy decreases with higher distance of the source to the detector which is intuitive due to approximate flux dependence following the inverse square law. Further, a saturation in accuracy regarding the number of electrical leads and a linear dependence of the reconstruction error on the measurement noise level are observed.Significance.A broad range of REA detector configurations and their characteristics are investigated by this study for radioactive source localization allowing diverse practical applications with detector diameters ranging from millimeters to meters.


Asunto(s)
Método de Montecarlo , Estudios de Factibilidad
5.
Phys Med Biol ; 67(13)2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35667367

RESUMEN

We have developed a new type of detector array for monitoring of radiation beams in radiotherapy. The detector has parallel-plane architecture with multiple large-area uniform thin-film electrodes. At least one of the electrodes is resistive and has multiple signal readouts spread out along its perimeter. The integral dose deposited in the detector gives rise to multiple signals that depend on the distribution of radiation with respect to resistive electrode array (REA) geometry. The purpose of the present study was to experimentally determine basic detector response to MLC collimated x-ray fields. Two detector arrays have been characterized: circular and rectangular. The current and electrostatic potential distribution within the resistive electrode are governed by the Laplace and continuity equations with boundary conditions at the border with the readouts. Measurements for pencil beams showed that signal strength depends primarily on the distances between the location of the pencil beam and the readouts. Measurements for larger irregular MLC showed that signals as a function of time are quasi-linear with respect to MLC position and are proportional to the MLC area. Derivation of clinically relevant radiation beam parameters from REA signals, such as MLC position, MLC gap size and monitor unit per MLC segment relies on the detector response model with empirical model parameters. An approximate analytical detector response model was proposed and used to fit experiment data.


Asunto(s)
Monitoreo de Radiación , Radioterapia de Intensidad Modulada , Electrodos , Radiometría/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Rayos X
6.
Phys Med Biol ; 67(5)2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35134790

RESUMEN

The purpose of the present work is to evaluate the feasibility of a novel real-time beam monitoring device for medical linacs which remotely senses charge carriers produced in air by the beam without intersecting and attenuating the beamline. The primary goal is to elaborate a theoretical concept of a possible detector geometry and underlying physical model that allows for determination of clinically relevant beam data in real time, namely MLC leaf positions and dose rate. The detector consists of two opposing electrode arrays arranged in two possible orientations around the beamline. Detection of charge carriers is governed by electromagnetic principles described by Shockley-Ramo theorem. Ions produced by ionization of the air column upstream of patient move laterally in an external electric field. According to the method of images, mirror charges and mirror currents are formed in the strip electrodes. Determination of MU rate and MLC positions using the measured signal requires solution of an inverse problem. In the present work we adopted a Least-Square approach and characterized detector response and sensitivity to detection of beam properties for different electrode geometries and MLC shapes. Results were dependent on MLC field shape and the leaf position within the active volume. The accuracy of determination of leaf positions were in the sub-mm range (up to 0.25-1 mm). Additionally, detector sensitivity was quantified by simulating ions/pulse delivered with a radiation transport deterministic computation in 1D in CEPXS/ONEDANT. For a 6 MV linac pulse, signal amplitude per pulse was estimated to be in the lower pA to fA range. We computationally demonstrated feasibility of the remote sensing detector capable of measuring beam parameters such as MLC leaf positions and dose range for each pulse. Future work should focus on optimizing the electrode geometry to increase sensitivity and better reconstruction algorithms to provide more accurate solutions of the inverse problem.


Asunto(s)
Tecnología de Sensores Remotos , Sincrotrones , Algoritmos , Electricidad , Frecuencia Cardíaca , Humanos
7.
Med Phys ; 48(4): 1921-1930, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33448024

RESUMEN

PURPOSE: This is a computational study to develop a rugged self-powered Radioisotope Identification Device (RIID). The principle of operation relies on the High Energy Current (HEC) concept (Zygmanski and Sajo, Med Phys. 43 4-15, 2016) with measurement of fast electron currents between low-Z and high-Z thin-film electrodes separated by nanoporous aerogel films in a multilayer detector structure whose prototypes were previously investigated (Brivio, Albert, Freund, Gagne, Sajo and Zygmanski, Med Phys, 46 4233-4240, 2019), (Brivio, Albert, Gagne, Freund, Sajo and Zygmanski, J Phys D Appl Phys, 53 265303, 2020). Here, we present an optimal detector design that accounts for a wide energy range (keV-MeV) of x-ray-emitting radioisotopes that are of interest to national security and radiation therapy. MATERIALS: We studied numerous multilayer detector geometries with N = 1..24 basic detector elements composed of 3 electrodes: N x (Al-aerogel-Ta-aerogel-Al). The thicknesses of electrodes and their total number were varied depending on the incident x-ray spectra and its ability to penetrate and interact with the different layers, producing fast electrons. We used radiation transport simulations to find a balanced geometry that accounts for all energies from 10 keV to 6 MeV in a single design with relatively few detector elements (N = 24). In the balanced design, the electrodes have increasing thickness as a function of depth in the detector, ranging from 0.5 µm-Ta and 10 µm-Al at the entrance to 10 mm-Ta and 2.5 mm-Al at the exit. Aerogel thickness was fixed at 50 µm. Electron currents forming RIID signals were acquired from all Ta electrodes. A model function M(x, Ei ) representing the detector yield as a function of the cumulative Ta thickness (x) for 70 monoenergetic incident beams (E) was derived. We also investigated the detector response to selected radioactive isotopes (Pd-103, I-125, Pu-239, U-235, Ir-192, Cs-137, Co-60). Additional studies were performed with Bremsstrahlung spectra produced by electron beams in kVp tubes and in MV Linacs used in radiology and radiation therapy departments. We investigated different algorithms for radioisotope identification that would work for unknown unshielded as well as shielded sources. RESULTS: Characteristic features of response functions for monoenergetic beams and radioisotopes were determined and used to develop two inverse algorithms of radioisotope identification. Using these algorithms, we were able to identify the unshielded and shielded sources, quantify the minimum, mean and maximum effective energies of the shielded spectra, and estimate the amount of Compton background in the spectrum. CONCLUSIONS: A multilayer sensor based on fast electron current was optimized and studied in its abilities as RIID. A balanced design permits the identification of radioisotopes with of a wide range of keV-MeV energies. The device is low cost, rugged, self-powered and can withstand very high dose rates, allowing deployment in difficult conditions, including radiation incidents. The algorithm we developed for radioisotope identification and spectral unfolding is robust and it is an important component in practical applications.


Asunto(s)
Plutonio , Uranio , Radioisótopos de Cesio , Radioisótopos de Yodo , Método de Montecarlo , Paladio , Fotones , Radioisótopos , Radiometría
8.
Phys Med Biol ; 65(8): 08NT02, 2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32187595

RESUMEN

The purpose of the present development is to employ 3D printing to prototype an ion chamber array with a scalable design potentially allowing increased spatial resolution and a larger active area. An additional goal is to design and fabricate a custom size thin-panel detector array with low-Z components. As a proof of principle demonstration, a medium size detector array with 30 × 30 air-vented ion chambers was 3D-printed using PLA as frame for the electrodes. The active-area is 122 mm × 120 mm with 4 × 4 mm2 spatial resolution. External electrodes are cylindrical and made from conductive PLA. Internal electrodes are made from microwire. The array is symmetric with respect to the central plane and its thickness is 10 mm including build-up/-down plates of 2.5 mm thickness. Data acquisition is realized by biasing only selected chamber rows and reading only 30 chambers at a time. To test the device for potential clinical applications, 1D dose profiles and 2D dose maps with various square and irregular fields were measured. The overall agreement with the reference doses (film and treatment planning system) was satisfactory, but the measured dose differs in the penumbra region and in the field size dependence. Both of these features are related to the thin walls between neighboring ion chambers and different lateral phantom scatter in the detector panel vs homogeneous material. We demonstrated feasibility of radiation detector arrays with minimal number of readout channels and low-cost electronics. The acquisition scheme based on selected row or column 'activation' by bias voltage is not practical for 2D dosimetry but it allows for rapid turn-around when testing of custom arrays with the aid of multiple 1D dose profiles. Future progress in this area includes overcoming the limitations due high chamber packing ratio, which leads to the lateral scattering effects.


Asunto(s)
Diseño de Equipo , Radiometría/instrumentación , Conductividad Eléctrica , Electrodos , Humanos , Fantasmas de Imagen , Impresión Tridimensional
9.
Med Phys ; 46(12): 5770-5779, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31571224

RESUMEN

PURPOSE: To explore 3D printing for rapid development of prototype thin slab low-Z/density ionization chamber arrays viable for custom needs in radiotherapy dosimetry and quality assurance (QA). MATERIALS AND METHODS: We designed and fabricated parallel plate ionization chambers and ionization chamber arrays using an off-the-shelf 3D printing equipment. Conductive components of the detectors were made of conductive polylactic acid (cPLA) and insulating components were made of acrylonitrile butadiene styrene (ABS). We characterized the detector responses using a Varian TrueBeam linac at 95 cm SSD in slab solid water phantom at 5 cm depth. We measured the current-voltage (IV) curves, the response to different energy beam lines (2.5 MV, 6 MV, 6 MV FFF) for various dose rates and compared them to responses of a commercial Exradin A12 ionization chamber. We measured off-axis ratio (OAR) for several small field static multi-leaf collimators field sizes (0.5-3 cm) and compared them to OAR data obtained for commissioning of stereotactic radiotherapy. RESULTS: We identified the printing capability and the limitations of a low-cost off-the-shelf 3D printer for rapid prototyping of detector arrays. The design of the array with sub-millimeter size features conformed to the 3D printing capabilities. IV-curve for the array showed a strong polarity effect (8%) due to the design. Results for the parallel plate and the array compared well with A12 chamber: monitor unit (MU) dependence for the array was within a few % and the response to different energy beam lines was within 1%. Off-axis dose profiles measured with the array were comparable to dose profiles obtained in water tank and stereotactic diode after accounting for the size of the chambers. Dose error was within 2% at the center of the profile and slightly larger at the penumbra. CONCLUSIONS: Rapid prototyping of ion chambers by means of low-cost 3D printing is feasible with certain limitations in the design and spatial accuracy of the printed details.


Asunto(s)
Diseño de Equipo/métodos , Impresión Tridimensional , Radiometría/instrumentación , Conductividad Eléctrica , Factores de Tiempo
10.
Med Phys ; 46(9): 4233-4240, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31276225

RESUMEN

PURPOSE: We developed a new class of aerogel-based thin-film self-powered radiation sensors employing high-energy electron current (HEC) in periodic multilayer (high-Z | polyimide aerogel (PA) | low-Z) electrode microstructures. MATERIALS: Low-Z (Al) and high-Z (Ta) electrodes were deposited on 50 µm-thick PA films to obtain sensors with Al-PA-Ta-PA-Al structures. Sensors were tested with x rays in the 40-120 kVp range and with 2.5 MV, 6 MV, and 6 MV-FFF linac beams (TrueBeam, Varian). Performance of PA-HEC sensors was compared to commercial A12 Farmer ionization chamber as well as to radiation transport simulations using CEPXS/ONEDANT with nanometer-to-micrometer spatial resolution. The computations included periodic and single-element structures N x (Al-PA-Ta-PA-Al) with variable layer thicknesses. RESULTS: Signal from PA-HEC sensors was proportional to the simulated net leakage electron current (averaged over the PA thickness). Experimental response was linear with dose and independent of dose rate. Detector responses to different x-ray sources show higher signals for kVp photon energies, as expected, though a strong signal was obtained for MV energies as well. The signal scaled with total effective area inside the multielemental structures; for example, the yield of a multielement sensor made with 20 Ta layers compared to a single-element structure with 1 Ta layer of the same total thickness of Ta was 10 times greater for 6 MV beam and 23 times greater for 120 kVp. Beam attenuation per element in the detector was 0.5%, 1%, 3%, and 46%, respectively for 6 MV, 6 MV FFF, 2.5 MV, and 120 kVp. CONCLUSION: We demonstrated the feasibility of aerogel-based multilayer HEC radiation detector and its application for flux/dose monitoring of kVp and radiotherapy MV beams with small beam attenuation.


Asunto(s)
Electrones , Nanotecnología/instrumentación , Radiometría/instrumentación , Geles , Porosidad , Factores de Tiempo , Rayos X
11.
Med Phys ; 44(12): 6632-6640, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29072322

RESUMEN

PURPOSE: We developed a method for measuring signal enhancement produced by high-Z nanofilm electrodes in parallel plate ionization chambers with variable thickness microgaps. METHODS: We used a laboratory-made variable gap parallel plate ionization chamber with nanofilm electrodes made of aluminum-aluminum (Al-Al) and aluminum-tantalum (Al-Ta). The electrodes were evaporated on 1 mm thick glass substrates. The interelectrode air gap was varied from 3 µm to 1 cm. The gap size was measured using a digital micrometer and it was confirmed by capacitance measurements. The electric field in the chamber was kept between 0.1 kV/cm and 1 kV/cm for all the gap sizes by applying appropriate compensating voltages. The chamber was exposed to 120 kVp X-rays. The current was measured using a commercial data acquisition system with temporal resolution of 600 Hz. In addition, radiation transport simulations were carried out to characterize the dose, D(x), high-energy electron current, J(x), and deposited charge, Q(x), as a function of distance, x, from the electrodes. A deterministic method was selected over Monte Carlo due to its ability to produce results with 10 nm spatial resolution without stochastic uncertainties. Experimental signal enhancement ratio, SER(G) which we defined as the ratio of signal for Al-air-Ta to signal for Al-air-Al for each gap size, was compared to computations. The individual contributions of dose, electron current, and charge deposition to the signal enhancement were determined. RESULTS: Experimental signals matched computed data for all gap sizes after accounting for several contributions to the signal: (a) charge carrier generated via ionization due to the energy deposited in the air gap, D(x); (b) high-energy electron current, J(x), leaking from high-Z electrode (Ta) toward low-Z electrode (Al); (c) deposited charge in the air gap, Q(x); and (d) the decreased collection efficiency for large gaps (>~500 µm). Q(x) accounts for the electrons below 100 eV, which are regarded as stopped by the radiation transport code but which can move and form electron current in small gaps (<100 µm). While the total energy deposited in the air gap increases with gap size for both samples, the average high-energy current and deposited charge are moderately decreasing with the air gap. When gap sizes are smaller than ~20 µm, the contribution to signal from dose approaches zero while contributions from high-energy current and deposited charges give rise to an offset signal. The measured signal enhancement ratio (SER) was 40.0 ± 5.0 for the 3 µm gap and rapidly decreasing with gap size down to 9.9 ± 1.2 for the 21 µm gap and to 6.6 ± 0.3 for the 100 µm gap. The uncertainties in SER were mostly due to uncertainties in gap size and data acquisition system. CONCLUSIONS: We developed an experimental method to determine the signal enhancement due to high-Z nanolayers in parallel plate ionization chambers with micrometer spatial resolution. As the water-equivalent thicknesses of these air gaps are 3 nm to 10 µm, the method may also be applicable for nanoscopic spatial resolution of other gap materials. The method may be extended to solid insulator materials with low Z.


Asunto(s)
Nanotecnología/instrumentación , Radiometría/instrumentación , Electrodos , Método de Montecarlo , Relación Señal-Ruido
12.
ACS Appl Mater Interfaces ; 9(12): 11258-11265, 2017 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-28269982

RESUMEN

We studied the effective contact potential difference (ECPD) of thin film nanostructures and its role in self-powered X-ray sensors, which use the high-energy current detection scheme. We compared the response to kilovoltage X-rays of several nanostructures made of disparate combinations of conductors (Al, Cu, Ta, ITO) and oxides (SiO2, Ta2O5, Al2O3). We measured current-voltage curves in parallel-plate configuration separated by an air gap and determined three characteristic parameters: current at zero voltage bias I0, the voltage offset for zero current ECPD, and saturation current Isat. We found that the metals' ECPD values measured with our technique were higher than the CPD values measured with photoelectron spectroscopy in situ, i.e., no air contact. These differences are related to natural oxidization and to the presence of photo-/Auger-electron current leaking from the high-Z toward the low-Z electrode, as suggested by additional experiments carried out in vacuum. Further, the deposition of the 40-500 nm oxide layer on the surface of metallic substrates strongly affects their contact potential. This technique exploits ionization and charge carrier transport in both solid insulators and in air, and it opens the possibility of measuring the ECPD between metals separated by a solid insulator in a metal-insulator-metal (MIM) configuration. Additionally, we demonstrated that certain configurations of MIM structures are suitable for X-ray detection in self-powered mode.

13.
Med Phys ; 44(5): 1969-1974, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28122117

RESUMEN

PURPOSE: A new type of thin-film interdigital detector (TFID) for medical dosimetry is investigated. The focus of this study was to characterize the detector response as a function of detector geometry in an attempt to optimize it and to understand the underlying radio-electrical effects leading to signal formation. METHODS: We characterize the detector response to kilovoltage x-ray beams used in fluoroscopy and computed tomography. Each element (pixel) of the detector is composed of conductive intercombing digits deposited on a thin-film dielectric substrate by nanofabrication or using a printing process. The detector is practically transparent to x-ray radiation, yet it generates sufficient signal for many types of medical dosimetry and quality assurance tasks. The thin-film detector has negligible surface mass density (about 2.5 mg/cm2 for a 1-µm-thick Cu TFID on 12.5-µm-thick Kapton substrate) and it is conformable to curved geometries found in the medical x-ray equipment or on patient skin surface. The prototype detectors were made using glass and Kapton substrates with copper-copper and copper-aluminum interdigits. Although in principle the detector can be operated without any external bias voltage when the digits are made of disparate materials (e.g., Cu-Al), we also characterized the detector properties under small electric fields via its current-voltage curve (IV curve). RESULTS: Using 120 kVp, 25 mA x-ray beam with 10V external bias, the Cu-Cu detector response was about 0.2 nA/cm2 . We also measured a one-dimensional transmitted dose profile for a phantom under fluoroscopic x-rays and found relatively good agreement with a commercial photodiode (XR R12-0191, IBA Dosimetry). CONCLUSIONS: We demonstrated the potential of TFID detectors for kilovoltage dosimetry and we defined its optimal geometry. For digits made of the same material and for digit width equal to the separation between them, we found that the thin-film detector has optimal performance when the distance between the digit centers is about 1 mm, while in the fixed digit width cases we observed that the signal is higher when their edge-to-edge separation is as small as possible.


Asunto(s)
Fluoroscopía , Fantasmas de Imagen , Radiometría , Dosimetría por Película , Humanos , Rayos X
14.
Phys Med Biol ; 61(16): N403-14, 2016 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-27452789

RESUMEN

A prototype topological detector was fabricated and investigated for quality assurance of radiation producing medical devices. Unlike a typical array or flat panel detector, a topological detector, while capable of achieving a very high spatial resolution, consists of only a few elements and therefore is much simpler in construction and more cost effective. The key feature allowing this advancement is a geometry-driven design that is customized for a specific dosimetric application. In the current work, a topological detector of two elements was examined for the positioning verification of the radiation collimating devices (jaws, MLCs, and blades etc). The detector was diagonally segmented from a rectangular thin film strip (2.5 cm × 15 cm), giving two contiguous but independent detector elements. The segmented area was the central portion of the strip measuring 5 cm in length. Under irradiation, signals from each detector element were separately digitized using a commercial multichannel data acquisition system. The center and size of an x-ray field, which were uniquely determined by the collimator positions, were shown mathematically to relate to the difference and sum of the two signals. As a proof of concept, experiments were carried out using slit x-ray fields ranging from 2 mm to 20 mm in size. It was demonstrated that, the collimator positions can be accurately measured with sub-millimeter precisions.


Asunto(s)
Aceleradores de Partículas/instrumentación , Garantía de la Calidad de Atención de Salud/normas , Radiometría/instrumentación , Humanos , Reproducibilidad de los Resultados , Rayos X
15.
Opt Lett ; 37(19): 3951-3, 2012 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23027242

RESUMEN

We present an innovative method to address the relation between the purity of type-I polarization entangled states and the spatial properties of the pump laser beam. Our all-optical apparatus is based on a spatial light modulator, and it offers unprecedented control on the spatial phase function of the entangled states. In this way, we demonstrate quantitatively the relation between the purity of the generated state and the spatial field correlation function of the pump beam.

16.
Opt Express ; 17(14): 11236-45, 2009 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-19582036

RESUMEN

We address the problem of achieving a random laser with a cloud of cold atoms, in which gain and scattering are provided by the same atoms. In this system, the elastic scattering cross-section is related to the complex atomic polarizability. As a consequence, the random laser threshold is expressed as a function of this polarizability, which can be fully determined by spectroscopic measurements. We apply this idea to experimentally evaluate the threshold of a random laser based on Raman gain between non-degenerate Zeeman states and find a critical optical thickness on the order of 200, which is within reach of state-of-the-art cold-atom experiments.


Asunto(s)
Espectrometría Raman/métodos , Algoritmos , Frío , Difusión , Rayos Láser , Meloxicam , Óptica y Fotónica , Dispersión de Radiación , Tiazinas , Tiazoles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...