Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Cryst Growth Des ; 23(3): 1915-1924, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36879770

RESUMEN

The effect of pressure on the α and ß polymorphs of a derivative of Blatter's radical, 3-phenyl-1-(pyrid-2-yl)-1,4-dihydrobenzo[e][1,2,4]triazin-4-yl, has been investigated using single-crystal X-ray diffraction to maximum pressures of 5.76 and 7.42 GPa, respectively. The most compressible crystallographic direction in both structures lies parallel to π-stacking interactions, which semiempirical Pixel calculations indicate are also the strongest interactions present. The mechanism of compression in perpendicular directions is determined by void distributions. Discontinuities in the vibrational frequencies observed in Raman spectra measured between ambient pressure and ∼5.5 GPa show that both polymorphs undergo phase transitions, the α phase at 0.8 GPa and the ß phase at 2.1 GPa. The structural signatures of the transitions, which signal the onset of compression of initially more rigid intermolecular contacts, were identified from the trends in the occupied and unoccupied volumes of the unit cell with pressure and in the case of the ß phase by deviations from an ideal model of compression defined by Birch-Murnaghan equations of state.

2.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 78(Pt 2): 107-116, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35411850

RESUMEN

The crystal structure of Blatter's radical (1,3-diphenyl-1,4-dihydrobenzo[e][1,2,4]triazin-4-yl) has been investigated between ambient pressure and 6.07 GPa. The sample remains in a compressed form of the ambient-pressure phase up to 5.34 GPa, the largest direction of strain being parallel to the direction of π-stacking interactions. The bulk modulus is 7.4 (6) GPa, with a pressure derivative equal to 9.33 (11). As pressure increases, the phenyl groups attached to the N1 and C3 positions of the triazinyl moieties of neighbouring pairs of molecules approach each other, causing the former to begin to rotate between 3.42 to 5.34 GPa. The onset of this phenyl rotation may be interpreted as a second-order phase transition which introduces a new mode for accommodating pressure. It is premonitory to a first-order isosymmetric phase transition which occurs on increasing pressure from 5.34 to 5.54 GPa. Although the phase transition is driven by volume minimization, rather than relief of unfavourable contacts, it is accompanied by a sharp jump in the orientation of the rotation angle of the phenyl group. DFT calculations suggest that the adoption of a more planar conformation by the triazinyl moiety at the phase transition can be attributed to relief of intramolecular H...H contacts at the transition. Although no dimerization of the radicals occurs, the π-stacking interactions are compressed by 0.341 (3) Šbetween ambient pressure and 6.07 GPa.


Asunto(s)
Transición de Fase , Cristalografía por Rayos X , Teoría Funcional de la Densidad , Dimerización , Conformación Molecular , Presión , Triazinas/química
3.
IUCrJ ; 8(Pt 6): 860-866, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34804540

RESUMEN

Time-resolved carbamazepine crystallization from wet ethanol has been monitored using a combination of cryoTEM and 3D electron diffraction. Carbamazepine is shown to crystallize exclusively as a dihydrate after 180 s. When the timescale was reduced to 30 s, three further polymorphs could be identified. At 20 s, the development of early stage carbamazepine dihydrate was observed through phase separation. This work reveals two possible crystallization pathways present in this active pharmaceutical ingredient.

4.
IUCrJ ; 7(Pt 1): 5-9, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31949899

RESUMEN

3D electron diffraction (3DED) has been used to follow polymorph evolution in the crystallization of glycine from aqueous solution. The three polymorphs of glycine which exist under ambient conditions follow the stability order ß < α < γ. The least stable ß polymorph forms within the first 3 min, but this begins to yield the α-form after only 1 min more. Both structures could be determined from continuous rotation electron diffraction data collected in less than 20 s on crystals of thickness ∼100 nm. Even though the γ-form is thermodynamically the most stable polymorph, kinetics favour the α-form, which dominates after prolonged standing. In the same sample, some ß and one crystallite of the γ polymorph were also observed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA