Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Hum Reprod ; 34(7): 1313-1324, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31174209

RESUMEN

STUDY QUESTION: Does ageing affect the kinetics of the mitochondrial pool during oogenesis and early embryogenesis? SUMMARY ANSWER: While we found no age-related change during oogenesis, the kinetics of mitochondrial DNA content and the expression of the factors involved in mitochondrial biogenesis appeared to be significantly altered during embryogenesis. WHAT IS KNOWN ALREADY: Oocyte mitochondria are necessary for embryonic development. The morphological and functional alterations of mitochondria, as well as the qualitative and quantitative mtDNA anomalies, observed during ovarian ageing may be responsible for the alteration of oocyte competence and embryonic development. STUDY DESIGN, SIZE, DURATION: The study, conducted from November 2016 to November 2017, used 40 mice aged 5-8 weeks and 45 mice aged 9-11 months (C57Bl6/CBA F(1)). A total of 488 immature oocytes, with a diameter ranging from 20 µm to more than 80 µm, were collected from ovaries, and 1088 mature oocytes or embryos at different developmental stages (two PN, one-cell, i.e. syngamy, two-cell, four-cell, eight-cell, morula and blastocyst) were obtained after ovarian stimulation and, for embryos, mating. PARTICIPANTS/MATERIALS, SETTING, METHODS: Mitochondrial DNA was quantified by quantitative PCR. We used quantitative reverse transcriptase PCR (RT-PCR) (microfluidic method) to study the relative expression of three genes involved in the key steps of embryogenesis, i.e. embryonic genome activation (HSPA1) and differentiation (CDX2 and NANOG), two mtDNA genes (CYB and ND2) and five genes essential for mitochondrial biogenesis (PPARGC1A, NRF1, POLG, TFAM and PRKAA). The statistical analysis was based on mixed linear regression models applying a logistic link function (STATA v13.1 software), with values of P < 0.05 being considered significant. MAIN RESULTS AND THE ROLE OF CHANCE: During oogenesis, there was a significant increase in oocyte mtDNA content (P < 0.0001) without any difference between the two groups of mice (P = 0.73). During the first phase of embryogenesis, i.e. up to the two-cell stage, embryonic mtDNA decreased significantly in the aged mice (P < 0.0001), whereas it was stable for young mice (young/old difference P = 0.015). The second phase of embryogenesis, i.e. between the two-cell and eight-cell stages, was characterized by a decrease in embryonic mtDNA for young mice (P = 0.013) only (young/old difference P = 0.038). During the third phase, i.e. between the eight-cell and blastocyst stage, there was a significant increase in embryonic mtDNA content in young mice (P < 0.0001) but not found in aged mice (young/old difference P = 0.002). We also noted a faster expression of CDX2 and NANOG in the aged mice than in the young mice during the second (P = 0.007 and P = 0.02, respectively) and the third phase (P = 0.01 and P = 0.008, respectively) of embryogenesis. The expression of mitochondrial genes CYB and ND2 followed similar kinetics and was equivalent for both groups of mice, with a significant increase during the third phase (P < 0.01). Of the five genes involved in mitochondrial biogenesis, i.e. PPARGC1A, NRF1, POLG, TFAM and PRKAA, the expression of three genes decreased significantly during the first phase only in young mice (NRF1, P = 0.018; POLGA, P = 0.002; PRKAA, P = 0.010), with no subsequent difference compared to old mice. In conclusion, during early embryogenesis in the old mice, we suspect that the lack of a replicatory burst before the two-cell stage, associated with the early arrival at the minimum threshold value of mtDNA, together with the absence of an increase of mtDNA during the last phase, might potentially deregulate the key stages of early embryogenesis. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Because of the ethical impossibility of working on a human, this study was conducted only on a murine model. As superovulation was used, we cannot totally exclude that the differences observed were, at least partially, influenced by differences in ovarian response between young and old mice. WIDER IMPLICATIONS OF THE FINDINGS: Our findings suggest a pathophysiological explanation for the link observed between mitochondria and the deterioration of oocyte quality and early embryonic development with age. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the University of Angers, France, by the French national research centres INSERM and the CNRS and, in part, by PHASE Division, INRA. There are no competing interests.


Asunto(s)
ADN Mitocondrial/metabolismo , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario , Edad Materna , Oocitos/metabolismo , Oogénesis , Envejecimiento/fisiología , Animales , Hormona Antimülleriana/sangre , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Mitocondrias/fisiología , Biogénesis de Organelos , Ovario/fisiología , Embarazo
3.
Neurology ; 76(3): 260-4, 2011 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-21242494

RESUMEN

OBJECTIVE: DCC is the receptor for netrin, a protein that guides axon migration of developing neurons across the body's midline. Mutations in the DCC gene were recently identified in 2 families with congenital mirror movements (MM). The objective was to study clinical and genetic characteristics of 3 European families with MM and to test whether this disorder is genetically homogeneous. METHODS: We studied 3 MM families with a total of 13 affected subjects. Each patient had a standardized interview and neurologic examination, focusing on the phenomenology and course of the MM. The severity of MM was also assessed. Molecular analysis of DCC was performed in the index cases. In addition, linkage analysis of the DCC locus was performed in a large French family. RESULTS: The clinical expression and course of MM were very similar in all the affected subjects, regardless of DCC mutational status. However, slight intersubject variability in the severity of MM was noted within each family. Onset always occurred in infancy or early childhood, and MM did not deteriorate over time. Motor disability due to MM was mild and restricted to activities that require independent movements of the 2 hands. We found a novel mutation in the DCC gene in an Italian family with MM associated with abnormal ipsilateral corticospinal projection. The DCC locus was excluded in the French family. CONCLUSION: DCC has a crucial role in the development of corticospinal tracts in humans. Congenital MM is genetically heterogeneous, despite its clinical homogeneity.


Asunto(s)
Genes DCC/genética , Heterogeneidad Genética , Mutación , Trastorno de Movimiento Estereotipado/genética , Adulto , Edad de Inicio , Anciano , Discinesias/genética , Femenino , Francia , Humanos , Masculino , Persona de Mediana Edad , Dolor/etiología , Linaje , Fenotipo , Índice de Severidad de la Enfermedad , Trastorno de Movimiento Estereotipado/complicaciones , Trastorno de Movimiento Estereotipado/fisiopatología , Extremidad Superior/fisiopatología
4.
Biol Reprod ; 65(2): 412-9, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11466208

RESUMEN

Mice have recently been successfully cloned from embryonic stem (ES) cells. However, these fast dividing cells provide a heterogeneous population of donor nuclei, in terms of cell cycle stage. Here we used metaphases as a source of donor nuclei because they offer the advantage of being both unambiguously recognizable and synchronous with the recipient metaphase II oocyte. We showed that metaphases from ES cells can provide a significantly higher development rate to the morula or blastocyst stage (56--70%) than interphasic nuclei (up to 28%) following injection into a recipient oocyte. Selective detachment of mitotic cells after a demecolcin treatment greatly facilitates and accelerates the reconstruction of embryos by providing a nearly pure population of cells in metaphase and did not markedly affect the developmental rate. Most of the blastocysts obtained by this procedure were normal in terms of both morphology and ratio of inner cell mass and total cell number. After transfer into pseudopregnant recipients at the one- or two-cell stage, the ability of metaphase to be fully reprogrammed was demonstrated by the birth of two pups (1.5% of activated oocytes). Although the implantation rate was quite high (up to 32.9% of activated oocytes), the postimplantation development was characterized by a high and rapid mortality. Our data provide a clear situation to explore the long-lasting effects that can be induced by early reprogramming events.


Asunto(s)
Clonación de Organismos , Embrión de Mamíferos/fisiología , Metafase , Técnicas de Transferencia Nuclear , Células Madre/ultraestructura , Animales , Blastocisto/fisiología , Ciclo Celular , Tamaño de la Célula , ADN/análisis , Implantación del Embrión , Transferencia de Embrión , Embrión de Mamíferos/citología , Desarrollo Embrionario y Fetal , Citometría de Flujo , Interfase , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Mórula/fisiología , Oocitos/ultraestructura
5.
Mol Reprod Dev ; 59(3): 277-84, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11424213

RESUMEN

As it was shown earlier, resumption of rRNA transcription in early mouse embryo is localized in the peripheral region of nucleolus precursor body/NPB/during the two-cell stage. Recently, nucleolar phosphoprotein Nopp140 was presented to shuttle between the nucleolus and cytoplasm as chaperone of snoRNPs. Nopp140 interacts with RNA polymerase I in nucleolus and also accumulates in CBs, suggesting a pathway between the two organelles. The aim of the study was to describe the changing location of Nopp140 during the first cleavage stages of mouse embryos and its re-location after inhibition of rRNA synthesis with actinomycin D. Light microscope immunocytochemical staining showed Nopp140 in the periphery of NPBs before activation of rDNA transcription and in addition confirmed its localization in CBs. Immunolabelling with antibodies against RNA Pol I and UBF gave co-localization of these proteins, implicating that Nopp140 may actively participate to rDNA transcription. We suggest that fundamental differences in molecular organization of rDNA synthesis and postranscriptional processes between cycling somatic and pre-implantation embryonic cells may be in selective transport of transcription and/or processing-complexes of proteins to the nucleolar organizer regions (NOR). Mol. Reprod. Dev. 59:277-284, 2001.


Asunto(s)
Blastocisto/química , Nucléolo Celular/química , Proteínas Nucleares/análisis , Fosfoproteínas/análisis , Animales , Dactinomicina/farmacología , Femenino , Inmunohistoquímica , Ratones , Microscopía Fluorescente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...