Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 4609, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528080

RESUMEN

5-hydroxymethylfurfural (HMF) is a valuable and essential platform chemical for establishing a sustainable, eco-friendly fine-chemical and pharmaceutical industry based on biomass. The cost-effective production of HMF from abundant C6 sugars requires mild reaction temperatures and efficient catalysts from naturally abundant materials. Herein, we report how fulvic acid forms complexes with Al3+ ions that exhibit solar absorption and photocatalytic activity for glucose conversion to HMF in one-pot reaction, in good yield (~60%) and at moderate temperatures (80 °C). When using representative components of fulvic acid, catechol and pyrogallol as ligands, 70 and 67% HMF yields are achieved, respectively, at 70 °C. Al3+ ions are not recognised as effective photocatalysts; however, complexing them with fulvic acid components as light antennas can create new functionality. This mechanism offers prospects for new green photocatalytic systems to synthesise a range of substances that have not previously been considered.

2.
Chem Commun (Camb) ; 58(74): 10416-10419, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36040425

RESUMEN

The radical reactions of dimethylsulfoxide (DMSO) and tetrahydrothiophene-1-oxide (THTO) with reactive oxygen species (ROS) in the presence of a nitroxide radical scavenger have been evaluated both synthetically and in analytical practice. Fenton-mediated generation of oxygen-centred radicals produced several unusual products that reflect the fragmentation and ring-opening radical mechanisms of DMSO and THTO respectively. Addition of pollution-derived ROS to DMSO/THTO nitroxide solutions produced LC-MS detectable amounts of the same products isolated from the larger-scaled Fenton reactions. For air pollution analysis, these results highlight the complexity surrounding DMSO reactivity and fragmentation, and indicate that THTO produces simpler outcomes that should facilitate analysis of the processes involved.


Asunto(s)
Dimetilsulfóxido , Material Particulado , Especies Reactivas de Oxígeno , Sulfóxidos , Tiofenos
3.
Inorg Chem ; 61(4): 2086-2092, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35050601

RESUMEN

Achieving reversible molecular crystal transformation between coordinate aggregates and hydrogen bonded assemblies has been a challenging task because coordinate bonds are generally much stronger than hydrogen bonds. Recently, we have reported the incorporation of silver ions into the cyanuric acid-melamine (CAM) network, resulting in the formation of a 1D coordination polymer (crystal 1) through forming the κ1N-Ag-κ2N coordination bonds. In this work, we find crystal 1 will undergo reversible transformation to hydrogen bonded coordinate units (crystal 2) through the breaking of coordinate chains and then the addition of CAM hydrogen bonding motifs into the framework. Crystal 2 presents a pseudohexagonal arrangement comprised of the κ1N-Ag-κ2N units connected by two sets of the triple hydrogen bonds, which extends two-dimensionally and stacks into a layer-structured crystal. Light was shed on the tautomerization of CA and M ligands associated with the crystal transformations using single crystal X-ray diffraction and infrared spectroscopy by analyzing the bond lengths and vibrations. We also highlight that photoluminescence can be a useful tool to probe the tautomer conversions of conjugated molecules. Furthermore, crystal 1 demonstrates high flexibility and can be bent over 180° and recover to its original shape after stress release. Crystal 2, on the contrary, is brittle and shows distinct mechanical anisotropy along different crystal orientations, as unveiled by nanoindentation measurements. The elastic modulus is well correlated with the chemical bonding strength along each orientation, and it is noteworthy that the contribution of the triple hydrogen bonds is comparable to that of the coordination bonds.

4.
J Colloid Interface Sci ; 606(Pt 1): 588-599, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34411830

RESUMEN

Selective oxidation of alcohols is an essential reaction for fine chemical production. Here, the photocatalytic oxidation of benzyl alcohol by zinc oxide (ZnO) nanocrystals was investigated to clarify the mechanism of selective oxidation with this process. Reactivity when in contact with three distinct ZnO nanocrystal shapes: nanocones, nanorods and nanoplates, was studied in order to compare crystal facet-specific effects in the reaction system. The same non-hydrothermal and non-hydrolytic aminolysis method was used to synthesise all three nanocrystal shapes. The ZnO catalysts were characterized using by a range of techniques to establish the key properties of the prominent ZnO crystal facets exposed to the reaction medium. The ZnO nanocrystals photocatalysed the benzyl alcohol oxidation reaction when irradiated by a 370 - 375 nm LED output and each ZnO crystal morphology exhibited different reaction kinetics for the oxidation reaction. ZnO nanocones displayed the highest benzyl alcohol conversion rate while nanorods gave the lowest. This established a facet-dependent kinetic activity for the benzyl alcohol reaction of (101¯1) > (0001) > (101¯0). Experimental and density functional theory computation results confirm that the {101¯1} facet is a surface that exposes undercoordinated O atoms to the reaction medium, which explains why the reactant benzyl alcohol adsorption on this facet is the highest. Light irradiation can excite valence band electrons to the conduction band, which are then captured by O2 molecules to yield superoxide (O2•-). In a non-aqueous solvent, the photogenerated holes oxidise benzyl alcohol to form a radical species, which reacts with O2•- to yield benzaldehyde. This results in 100% product selectivity for benzaldehyde, rather than the carboxylic acid derivative.


Asunto(s)
Nanoestructuras , Nanotubos , Óxido de Zinc , Catálisis , Oxidación-Reducción
5.
ACS Appl Mater Interfaces ; 13(34): 40441-40450, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34423640

RESUMEN

Organic luminogens have been widely used in optoelectronic devices, bioimaging, and sensing. Conventionally, the synthesis of organic luminogens requires sophisticated, multistep design, reaction, and isolation procedures. Herein, the products of the melt-phase condensation of benzoguanamine (BG; 2,4-diamino-6-phenyl-1,3,5-triazine) at 370-410 °C display interesting reaction-condition-dependent luminescence properties, including photoluminescence (PL) at a variety of wavelengths in the visible spectrum and quantum efficiencies (PLQE) of up to 58% in the powder form. With a simple and straightforward solvent washing procedure, the prominent blue luminescent component BG dimer was obtained in gram scale with >93% purity (96.5% purity after fractional sublimation). The BG dimer exhibited distinct aggregation-induced emission (AIE) properties. PL measurements indicate that the electronically excited state of the BG dimer undergoes efficient intramolecular nonradiative deactivation in room-temperature solution, leading to a significantly reduced PLQE (<0.1%) in solution. These nonradiative processes are substantially inhibited when the dimer existed in the form of crystals, solid aggregates in solution or being fixed in a rigid polymer film, resulting in a significant increase in the PLQE and lifetime. This work not only provided a new understanding for PL properties of self-condensation luminescent products but also represented an unconventional strategy for large-scale preparation of organic luminogens with high purity.

6.
Inorg Chem ; 60(13): 9673-9679, 2021 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-34114797

RESUMEN

A range of morphologically distinct metallosupramolecular Cu(II) and Pd(II) complexes has been constructed, based on the tritopic ligand 1,1',1″-(benzene-1,3,5-triyl)tris(4,4-dimethylpentane-1,3-dione) (H3L). By control of the reaction conditions, it is possible to generate distinct coordination assemblies possessing either macrocyclic or polymeric structures and more importantly distinct activity in catalysis of the Suzuki-Miyaura cross-coupling.

7.
Chem Commun (Camb) ; 57(40): 4974-4975, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-33870973

RESUMEN

A re-refinement of the published but chemically implausible, crystal structure of "Form III" of 4-bromophenyl 4-bromobenzoate shows that it is not a polymorph, but instead a co-crystal containing both 4-bromophenyl 4-bromobenzoate (≈25%) and likely 4-bromophenyl 4-nitrobenzoate (≈75%).

8.
Chem Commun (Camb) ; 57(40): 4918-4921, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-33870998

RESUMEN

Nature builds simple molecules into highly complex assemblies, which are involved in all fundamental processes of life. Some of the most intriguing biological assemblies are those that can be precisely reconfigured to achieve different functions using the same building blocks. Understanding the reconfiguration of synthetic self-assembled systems will allow us to better understand the complexity of proteins and design useful artificial chemical systems. Here we have prepared a relatively simple system in which two distinct self-assembled structures, a [Fe2L3]4+ helicate and a [Fe4L6]8+ cage that are formed from the same precursors, coexist at equilibrium. We have measured the rates of interconversion of these two species and propose a mechanism for the transformation.

9.
Angew Chem Int Ed Engl ; 60(18): 10402-10408, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33571392

RESUMEN

Herein, we pioneer a wavelength-gated synthesis route to phenalene diimides. Consecutive Diels-Alder reactions of methylisophthalaldehydes and maleimides afford hexahydro-phenalene-1,6-diol diimides via 5-formyl-hexahydro-benzo[f]isoindoles as the intermediate. Both photoreactions are efficient (82-99 % yield) and exhibit excellent diastereoselectivity (62-98 % d.r.). The wavelength-gated nature of the stepwise reaction enables the modular construction of phenalene diimide scaffolds by choice of substrate and wavelength. Importantly, this synthetic methodology opens a facile avenue to a new class of persistent phenalenyl diimide neutral radicals, constituting a versatile route to spin-active molecules.

10.
J Am Chem Soc ; 142(1): 479-486, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31833360

RESUMEN

In this work, we report on the synthesis of a free-standing, macroscopic robust supramolecular membrane by introducing silver-nitrogen coordinate bonding into preorganized, supramolecular hydrogen-bonded cyanuric acid-melamine (CAM) crystals. With the assistance of ammonia, silver ions competitively replace two of the three hydrogen atoms from cyanuric acid resulting in the transformation from short CAM nanorods to long CAM-Ag nanofibers (length over 1000 µm), accompanied by tautomerization of cyanuric acid. The single crystal structure of the CAM-Ag nanofibers is solved in the space group P1, with the asymmetric unit containing eight silver atoms, four melamine and four cyanuric acid molecules, which generate 1D coordination polymer chains consisting of alternating melamine and dianionic cyanurate ligands linked via silver-nitrogen bonds. The presence of interchain hydrogen bonds results in the expansion of the supramolecular network into undulating 2D sheets, which then stack into a 3D network via a series of intersheet hydrogen bonds and π-π interactions. Significantly, the CAM-Ag nanofibers spontaneously assemble into a free-standing membrane, with lateral size up to square centimeters and thickness of 30 µm. The membrane shows high flexibility and mechanical strength, owing to the improved flexibility of the CAM-Ag nanofibers with bonded chain structure, and can be reversibly and repeatedly bent over 90 degrees. Remarkably, the CAM-Ag membrane demonstrates distinct optical transmittance being shortwave IR transmissive but impenetrable to UV and visible light.

12.
Arch Biochem Biophys ; 663: 54-63, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30590022

RESUMEN

This study has evaluated the use of the P450 metalloenzymes CYP176A1, CYP101A1 and CYP102A1, together with engineered protein variants of CYP101A1 and CYP102A1, to alter the regioselectivity of 1,8- and 1,4-cineole hydroxylation. CYP176A1 was less selective for 1,4-cineole oxidation when compared to its preferred substrate, 1,8-cineole. The CYP102A1 variants significantly improved the activity over the WT enzyme for oxidation of 1,4- and 1,8-cineole. The CYP102A1 R47L/Y51F/A74G/F87V/L188Q mutant generated predominantly (1S)-6α-hydroxy-1,8-cineole (78% e.e.) from 1,8-cineole. Oxidation of 1,4-cineole by the CYP102A1 R47L/Y51F/F87A/I401P variant generated the 3α product in >90% yield. WT CYP101A1 formed a mixture metabolites with 1,8-cineole and very little product was generated with 1,4-cineole. In contrast the F87W/Y96F/L244A/V247L and F87W/Y96F/L244A variants of CYP101A1 favoured formation of 5α-hydroxy-1,8-cineole (>88%, 1S 86% e.e.) while the F87V/Y96F/L244A variant generated (1S)-6α-hydroxy-1,8-cineole in excess (90% regioselective, >99% e.e.). The CYP101A1 F87W/Y96F/L244A/V247L and F87W/Y96F/L244A mutants improved the oxidation of 1,4-cineole generating an excess of the 3α metabolite (1S > 99% e.e. with the latter). The CYP101A1 F87L/Y96F variant also improved the oxidation of this substrate but shifted the site of oxidation to the isopropyl group, (8-hydroxy-1,4-cineole). When this 8-hydroxy metabolite was generated in significant quantities desaturation of C8C9 to the corresponding alkene was also detected.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Monoterpenos Ciclohexánicos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Eucaliptol/metabolismo , Catálisis , Hidroxilación , Cinética , Oxidación-Reducción , Especificidad por Sustrato
13.
Angew Chem Int Ed Engl ; 57(35): 11325-11328, 2018 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-29998602

RESUMEN

Elastically flexible crystals form an emerging class of materials that exhibit a range of notable properties. The mechanism of thermal expansion in flexible crystals of bis(acetylacetonato)copper(II) is compared with the mechanism of molecular motion induced by bending and it is demonstrated that the two mechanisms are distinct. Upon bending, individual molecules within the crystal structure reversibly rotate, while thermal expansion results predominantly in an increase in intermolecular separations with only minor changes to molecular orientation through rotation.

14.
Chem Commun (Camb) ; 54(32): 3974-3976, 2018 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-29610824

RESUMEN

The rational, deliberate design of supramolecular architectures is of great importance for the discovery of complex materials. A three-dimensional cubic halogen-bonded network has been prepared by combination of an octahedral metal-containing halogen bond acceptor and a linear ditopic donor. This material displays α-Po pcu topology and is seven-fold interpenetrated. This is the first neutral, metal-containing three-dimensional halogen-bonded network to be reported.

15.
Chemistry ; 23(51): 12480-12483, 2017 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-28731587

RESUMEN

A unique pressure-induced Cu-N bond breaking/bond forming reaction is reported. The variation of pressure on a single crystal of a one-dimensional copper- (II)-containing coordination polymer (Cu2 L2 (1-methylpiperazine)2 ]n , where H2 L is 1,1'-(1,3-phenylene)-bis(4,4-dimethylpentane-1,3-dione)), was monitored using single crystal X-ray diffraction with the aid of a diamond anvil cell. At a very low elevated pressure (≈0.05 GPa) a remarkable reversible phase change was observed. The phase change results in the depolymerization of the material through the cleavage and formation of axial Cu-N bonds as well as "ring flips" of individual axially coordinated 1-methylpiperazine ligands. Overall, the pressure-induced phase change is associated with a surprising (and non-intuitive) shift in structure-from a 1-dimensional coordination polymer to a discrete dinuclear complex.

16.
Biomacromolecules ; 16(6): 1807-17, 2015 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-25970641

RESUMEN

Biopolymers are researched extensively for their applications in biomaterials science and drug delivery including structures and complexes of more than one polymer. Chemical characterization of complexes formed between chitosan (CHI) and alginate dialdehyde (ADA) biopolymers established that while electrostatic interactions dominate (as determined from X-ray photoelectron spectroscopy (XPS)) covalent cross-linking between these biopolymers also contribute to their stability (evidenced from immersion in salt solution). It was furthermore found that imine bond formation could not be directly detected by any of the techniques XPS, FTIR, (1)H NMR, or fluorescence. The layer-by-layer assemblies of the biopolymers formed on silica colloids, glass slides, and alginate hydrogel beads were evaluated using XPS, as well as zeta potential measurements for the silica colloids and changes to hydration properties for the hydrogels. It was found that the degree of oxidation of ADA affected the LbL assemblies in terms of a greater degree of CHI penetration observed when using the more conformationally flexible biopolymer ADA (higher degree of oxidation).


Asunto(s)
Alginatos/química , Quitosano/química , Vidrio/química , Hidrogeles/química , Dióxido de Silicio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA