Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Eur J Pediatr ; 181(5): 2087-2096, 2022 May.
Article En | MEDLINE | ID: mdl-35150310

One of the most feared neurological complications of premature birth is intraventricular hemorrhage, frequently triggered by fluctuations in cerebral blood flow (CBF). Although several techniques for CBF measurement have been developed, they are not part of clinical routine in neonatal intensive care. A promising tool for monitoring of CBF is its numerical assessment using standard clinical parameters such as mean arterial pressure, carbon dioxide partial pressure (pCO2) and oxygen partial pressure (pO2). A standard blood gas analysis is performed on arterial blood. In neonates, capillary blood is widely used for analysis of blood gas parameters. The purpose of this study was the assessment of differences between arterial and capillary analysis of blood gases and adjustment of the mathematical model for CBF calculation to capillary values. The statistical analysis of pCO2 and pO2 values collected from 254 preterm infants with a gestational age of 23-30 weeks revealed no significant differences between arterial and capillary pCO2 and significantly lower values for capillary pO2. The estimated mean differences between arterial and capillary pO2 of 15.15 mmHg (2.02 kPa) resulted in a significantly higher CBF calculated for capillary pO2 compared to CBF calculated for arterial pO2. Two methods for correction of capillary pO2 were proposed and compared, one based on the mean difference and another one based on a regression model. CONCLUSION: Capillary blood gas analysis with correction for pO2 as proposed in the present work is an acceptable alternative to arterial sampling for the assessment of CBF. WHAT IS KNOWN: • Arterial blood analysis is the gold standard in clinical practice. However, capillary blood is widely used for estimating blood gas parameters. • There is no significant difference between the arterial and capillary pCO2 values, but the capillary pO2 differs significantly from the arterial one. WHAT IS NEW: • The lower capillary pO2 values yield significantly higher values of calculated CBF compared to CBF computed from arterial pO2 measurements. • Two correction methods for the adjustment of capillary pO2 to arterial pO2 that made the difference in the calculated CBF insignificant have been proposed.


Gases , Infant, Premature , Blood Gas Analysis/methods , Carbon Dioxide , Cerebrovascular Circulation , Humans , Infant , Infant, Newborn , Oxygen
2.
PLoS One ; 16(12): e0261819, 2021.
Article En | MEDLINE | ID: mdl-34962951

Premature birth is one of the most important factors increasing the risk for brain damage in newborns. Development of an intraventricular hemorrhage in the immature brain is often triggered by fluctuations of cerebral blood flow (CBF). Therefore, monitoring of CBF becomes an important task in clinical care of preterm infants. Mathematical modeling of CBF can be a complementary tool in addition to diagnostic tools in clinical practice and research. The purpose of the present study is an enhancement of the previously developed mathematical model for CBF by a detailed description of apparent blood viscosity and vessel resistance, accounting for inhomogeneous hematocrit distribution in multiscale blood vessel architectures. The enhanced model is applied to our medical database retrospectively collected from the 254 preterm infants with a gestational age of 23-30 weeks. It is shown that by including clinically measured hematocrit in the mathematical model, apparent blood viscosity, vessel resistance, and hence the CBF are strongly affected. Thus, a statistically significant decrease in hematocrit values observed in the group of preterm infants with intraventricular hemorrhage resulted in a statistically significant increase in calculated CBF values.


Cerebrovascular Circulation , Hematocrit , Body Weight , Brain/physiopathology , Cerebral Hemorrhage/physiopathology , Female , Gestational Age , Humans , Infant, Extremely Premature , Infant, Newborn , Infant, Premature , Male , Models, Theoretical , Retrospective Studies , Viscosity
...