Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Eur J Hum Genet ; 29(3): 434-446, 2021 03.
Article En | MEDLINE | ID: mdl-33162552

Pompe disease is a lysosomal and neuromuscular disorder caused by deficiency of acid alpha-glucosidase (GAA), and causes classic infantile, childhood onset, or adulthood onset phenotypes. The biochemical diagnosis is based on GAA activity assays in dried blood spots, leukocytes, or fibroblasts. Diagnosis can be complicated by the existence of pseudodeficiencies, i.e., GAA variants that lower GAA activity but do not cause Pompe disease. A large-scale comparison between these assays for patient samples, including exceptions and borderline cases, along with clinical diagnoses has not been reported so far. Here we analyzed GAA activity in a total of 1709 diagnostic cases over the past 28 years using a total of 2591 analyses and we confirmed the clinical diagnosis in 174 patients. We compared the following assays: leukocytes using glycogen or 4MUG as substrate, fibroblasts using 4MUG as substrate, and dried blood spots using 4MUG as substrate. In 794 individuals, two or more assays were performed. We found that phenotypes could only be distinguished using fibroblasts with 4MUG as substrate. Pseudodeficiencies caused by the GAA2 allele could be ruled out using 4MUG rather than glycogen as substrate in leukocytes or fibroblasts. The Asian pseudodeficiency could only be ruled out in fibroblasts using 4MUG as substrate. We conclude that fibroblasts using 4MUG as substrate provides the most reliable assay for biochemical diagnosis and can serve to validate results from leukocytes or dried blood spots.


Clinical Enzyme Tests/methods , Dried Blood Spot Testing/methods , Genetic Testing/methods , Glycogen Storage Disease Type II/genetics , Cells, Cultured , Clinical Enzyme Tests/statistics & numerical data , Dried Blood Spot Testing/statistics & numerical data , Fibroblasts/enzymology , Fibroblasts/metabolism , Genetic Testing/statistics & numerical data , Glycogen Storage Disease Type II/diagnosis , Glycogen Storage Disease Type II/metabolism , Humans , Hymecromone/analogs & derivatives , Hymecromone/metabolism , Leukocytes/enzymology , Leukocytes/metabolism , Mutation , alpha-Glucosidases/genetics , alpha-Glucosidases/metabolism
2.
Mol Ther Methods Clin Dev ; 19: 174-185, 2020 Dec 11.
Article En | MEDLINE | ID: mdl-33209960

Identification and characterization of disease-associated variants in monogenic disorders is an important aspect of diagnosis, genetic counseling, prediction of disease severity, and development of therapy. However, the effects of disease-associated variants on pre-mRNA splicing and mRNA degradation are difficult to predict and often missed. Here we present a generic assay for unbiased identification and quantification of arylsulfatase B (ARSB) mRNA for molecular diagnosis of patients with mucopolysaccharidosis VI (MPS VI). We found that healthy control individuals have inefficient ARSB splicing because of natural skipping of exon 5 and inclusion of two pseudoexons in introns 5 and 6. Analyses of 12 MPS VI patients with 10 different genotypes resulted in identification of a 151-bp intron inclusion caused by the c.1142+2T>C variant and detection of low ARSB expression from alleles with the c.629A>G variant. A special case showed skipping of exon 4 and low ARSB expression. Although no disease-associated DNA variant could be identified in this patient, the molecular diagnosis could be made based on RNA. These results highlight the relevance of RNA-based analyses to establish a molecular diagnosis of MPS VI. We speculate that inefficient natural splicing of ARSB may be a target for therapy based on promotion of canonical splicing.

3.
Mol Ther Methods Clin Dev ; 18: 532-557, 2020 Sep 11.
Article En | MEDLINE | ID: mdl-32775490

We present an overview of clinical trials involving gene editing using clustered interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9), transcription activator-like effector nucleases (TALENs), or zinc finger nucleases (ZFNs) and discuss the underlying mechanisms. In cancer immunotherapy, gene editing is applied ex vivo in T cells, transgenic T cell receptor (tTCR)-T cells, or chimeric antigen receptor (CAR)-T cells to improve adoptive cell therapy for multiple cancer types. This involves knockouts of immune checkpoint regulators such as PD-1, components of the endogenous TCR and histocompatibility leukocyte antigen (HLA) complex to generate universal allogeneic CAR-T cells, and CD7 to prevent self-destruction in adoptive cell therapy. In cervix carcinoma caused by human papillomavirus (HPV), E6 and E7 genes are disrupted using topically applied gene editing machinery. In HIV infection, the CCR5 co-receptor is disrupted ex vivo to generate HIV-resistant T cells, CAR-T cells, or hematopoietic stem cells. In ß-thalassemia and sickle cell disease, hematopoietic stem cells are engineered ex vivo to induce the production of fetal hemoglobin. AAV-mediated in vivo gene editing is applied to exploit the liver for systemic production of therapeutic proteins in hemophilia and mucopolysaccharidoses, and in the eye to restore splicing of the CEP920 gene in Leber's congenital amaurosis. Close consideration of safety aspects and education of stakeholders will be essential for a successful implementation of gene editing technology in the clinic.

4.
iScience ; 23(1): 100789, 2020 Jan 24.
Article En | MEDLINE | ID: mdl-31901636

The ability to precisely modify human genes has been made possible by the development of tools such as meganucleases, zinc finger nucleases, TALENs, and CRISPR/Cas. These now make it possible to generate targeted deletions, insertions, gene knock outs, and point variants; to modulate gene expression by targeting transcription factors or epigenetic machineries to DNA; or to target and modify RNA. Endogenous repair mechanisms are used to make the modifications required in DNA; they include non-homologous end joining, homology-directed repair, homology-independent targeted integration, microhomology-mediated end joining, base-excision repair, and mismatch repair. Off-target effects can be monitored using in silico prediction and sequencing and minimized using Cas proteins with higher accuracy, such as high-fidelity Cas9, enhanced-specificity Cas9, and hyperaccurate Cas9. Alternatives to Cas9 have been identified, including Cpf1, Cas12a, Cas12b, and smaller Cas9 orthologs such as CjCas9. Delivery of gene-editing components is performed ex vivo using standard techniques or in vivo using AAV, lipid nanoparticles, or cell-penetrating peptides. Clinical development of gene-editing technology is progressing in several fields, including immunotherapy in cancer treatment, antiviral therapy for HIV infection, and treatment of genetic disorders such as ß-thalassemia, sickle cell disease, lysosomal storage disorders, and retinal dystrophy. Here we review these technological advances and the challenges to their clinical implementation.

5.
Stem Cell Reports ; 10(6): 1975-1990, 2018 06 05.
Article En | MEDLINE | ID: mdl-29731431

Although skeletal muscle cells can be generated from human induced pluripotent stem cells (iPSCs), transgene-free protocols include only limited options for their purification and expansion. In this study, we found that fluorescence-activated cell sorting-purified myogenic progenitors generated from healthy controls and Pompe disease iPSCs can be robustly expanded as much as 5 × 1011-fold. At all steps during expansion, cells could be cryopreserved or differentiated into myotubes with a high fusion index. In vitro, cells were amenable to maturation into striated and contractile myofibers. Insertion of acid α-glucosidase cDNA into the AAVS1 locus in iPSCs using CRISPR/Cas9 prevented glycogen accumulation in myotubes generated from a patient with classic infantile Pompe disease. In vivo, the expression of human-specific nuclear and sarcolemmar antigens indicated that myogenic progenitors engraft into murine muscle to form human myofibers. This protocol is useful for modeling of skeletal muscle disorders and for using patient-derived, gene-corrected cells to develop cell-based strategies.


Batch Cell Culture Techniques , Induced Pluripotent Stem Cells/cytology , Muscle Fibers, Skeletal/cytology , CRISPR-Cas Systems , Cell Differentiation , Cell- and Tissue-Based Therapy , Computational Biology/methods , Gene Expression Profiling , Glycogen Storage Disease Type II/therapy , Humans , Regeneration , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/metabolism , Stem Cell Transplantation
6.
Int Rev Cell Mol Biol ; 335: 85-141, 2018.
Article En | MEDLINE | ID: mdl-29305015

Alternative splicing is an important mechanism to regulate gene expression and to expand the repertoire of gene products in order to accommodate an increase in complexity of multicellular organisms. It needs to be precisely regulated, which is achieved via RNA structure, splicing factors, transcriptional regulation, and chromatin. Changes in any of these factors can lead to disease. These may include the core spliceosome, splicing enhancer/repressor sequences and their interacting proteins, the speed of transcription by RNA polymerase II, and histone modifications. While the basic principle of splicing is well understood, it is still very difficult to predict splicing outcome, due to the multiple levels of regulation. Current molecular diagnostics mainly uses Sanger sequencing of exons, or next-generation sequencing of gene panels or the whole exome. Functional analysis of potential splicing variants is scarce, and intronic variants are often not considered. This likely results in underestimation of the percentage of splicing variants. Understanding how sequence variants may affect splicing is not only crucial for confirmation of diagnosis and for genetic counseling, but also for the development of novel treatment options. These include small molecules, transsplicing, antisense oligonucleotides, and gene therapy. Here we review the current state of molecular mechanisms of splicing regulation and how deregulation can lead to human disease, diagnostics to detect splicing variants, and novel treatment options based on splicing correction.


Alternative Splicing/genetics , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/therapy , Animals , Genetic Diseases, Inborn/genetics , Homeostasis , Humans , Models, Biological , Mutation/genetics
...