Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Int J Mol Sci ; 24(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36768619

RESUMEN

Genodermatoses encompass a wide range of inherited skin diseases, many of which are monogenic. Genodermatoses range in severity and result in early-onset cancers or life-threatening damage to the skin, and there are few curative options. As such, there is a clinical need for single-intervention treatments with curative potential. Here, we discuss the nascent field of gene editing for the treatment of genodermatoses, exploring CRISPR-Cas9 and homology-directed repair, base editing, and prime editing tools for correcting pathogenic mutations. We specifically focus on the optimisation of editing efficiency, the minimisation off-targets edits, and the tools for delivery for potential future therapies. Honing each of these factors is essential for translating gene editing therapies into the clinical setting. Therefore, the aim of this review article is to raise important considerations for investigators aiming to develop gene editing approaches for genodermatoses.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Terapia Genética , Mutación , Reparación del ADN por Recombinación
3.
Sci Rep ; 12(1): 19643, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36385635

RESUMEN

Base editing introduces precise single-nucleotide edits in genomic DNA and has the potential to treat genetic diseases such as the blistering skin disease recessive dystrophic epidermolysis bullosa (RDEB), which is characterized by mutations in the COL7A1 gene and type VII collagen (C7) deficiency. Adenine base editors (ABEs) convert A-T base pairs to G-C base pairs without requiring double-stranded DNA breaks or donor DNA templates. Here, we use ABE8e, a recently evolved ABE, to correct primary RDEB patient fibroblasts harboring the recurrent RDEB nonsense mutation c.5047 C > T (p.Arg1683Ter) in exon 54 of COL7A1 and use a next generation sequencing workflow to interrogate post-treatment outcomes. Electroporation of ABE8e mRNA into a bulk population of RDEB patient fibroblasts resulted in remarkably efficient (94.6%) correction of the pathogenic allele, restoring COL7A1 mRNA and expression of C7 protein in western blots and in 3D skin constructs. Off-target DNA analysis did not detect off-target editing in treated patient-derived fibroblasts and there was no detectable increase in A-to-I changes in the RNA. Taken together, we have established a highly efficient pipeline for gene correction in primary fibroblasts with a favorable safety profile. This work lays a foundation for developing therapies for RDEB patients using ex vivo or in vivo base editing strategies.


Asunto(s)
Codón sin Sentido , Epidermólisis Ampollosa Distrófica , Humanos , Codón sin Sentido/genética , Adenina , Colágeno Tipo VII/genética , Colágeno Tipo VII/metabolismo , Epidermólisis Ampollosa Distrófica/genética , Epidermólisis Ampollosa Distrófica/terapia , Epidermólisis Ampollosa Distrófica/patología , Mutación
4.
Stem Cell Reports ; 17(5): 1033-1047, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35487213

RESUMEN

Induced pluripotent stem cells (iPSCs) are valuable in disease modeling because of their potential to expand and differentiate into virtually any cell type and recapitulate key aspects of human biology. Functional genomics are genome-wide studies that aim to discover genotype-phenotype relationships, thereby revealing the impact of human genetic diversity on normal and pathophysiology. In this review, we make the case that human iPSCs (hiPSCs) are a powerful tool for functional genomics, since they provide an in vitro platform for the study of population genetics. We describe cutting-edge tools and strategies now available to researchers, including multi-omics technologies, advances in hiPSC culture techniques, and innovations in drug development. Functional genomics approaches based on hiPSCs hold great promise for advancing drug discovery, disease etiology, and the impact of genetic variation on human biology.


Asunto(s)
Células Madre Pluripotentes Inducidas , Desarrollo de Medicamentos , Descubrimiento de Drogas/métodos , Genómica
5.
Cells ; 10(4)2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33805168

RESUMEN

The growth factor TGFß and the mechanosensitive calcium-permeable cation channel TRPV4 are both important for the development and maintenance of many tissues. Although TRPV4 and TGFß both affect core cellular functions, how their signals are integrated is unknown. Here we show that pharmacological activation of TRPV4 significantly increased the canonical response to TGFß stimulation in chondrocytes. Critically, this increase was only observed when TRPV4 was activated after, but not before TGFß stimulation. The increase was prevented by pharmacological TRPV4 inhibition or knockdown and is calcium/CamKII dependent. RNA-seq analysis after TRPV4 activation showed enrichment for the TGFß signalling pathway and identified JUN and SP1 as key transcription factors involved in this response. TRPV4 modulation of TGFß signalling represents an important pathway linking mechanical signalling to tissue development and homeostasis.


Asunto(s)
Condrocitos/metabolismo , Transducción de Señal , Canales Catiónicos TRPV/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Calcio/metabolismo , Calmodulina/metabolismo , Bovinos , Condrocitos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Humanos , Leucina/análogos & derivados , Leucina/farmacología , Ratones , Proteínas Proto-Oncogénicas c-jun/metabolismo , RNA-Seq , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor de Transcripción Sp1/metabolismo , Sulfonamidas/farmacología , Factores de Tiempo
6.
Nat Commun ; 11(1): 3603, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32681107

RESUMEN

Members of the PR/SET domain-containing (PRDM) family of zinc finger transcriptional regulators play diverse developmental roles. PRDM10 is a yet uncharacterized family member, and its function in vivo is unknown. Here, we report an essential requirement for PRDM10 in pre-implantation embryos and embryonic stem cells (mESCs), where loss of PRDM10 results in severe cell growth inhibition. Detailed genomic and biochemical analyses reveal that PRDM10 functions as a sequence-specific transcription factor. We identify Eif3b, which encodes a core component of the eukaryotic translation initiation factor 3 (eIF3) complex, as a key downstream target, and demonstrate that growth inhibition in PRDM10-deficient mESCs is in part mediated through EIF3B-dependent effects on global translation. Our work elucidates the molecular function of PRDM10 in maintaining global translation, establishes its essential role in early embryonic development and mESC homeostasis, and offers insights into the functional repertoire of PRDMs as well as the transcriptional mechanisms regulating translation.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Ratones/metabolismo , Factores de Transcripción/metabolismo , Animales , Desarrollo Embrionario , Células Madre Embrionarias/metabolismo , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Femenino , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones/embriología , Ratones/genética , Biosíntesis de Proteínas , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA