Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Biol ; 432(24): 166698, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33157085

RESUMEN

More than a million Okazaki fragments are synthesized, processed and joined during replication of the human genome. After synthesis of an RNA-DNA oligonucleotide by DNA polymerase α holoenzyme, proliferating cell nuclear antigen (PCNA), a homotrimeric DNA sliding clamp and polymerase processivity factor, is loaded onto the primer-template junction by replication factor C (RFC). Although PCNA interacts with the enzymes DNA polymerase δ (Pol δ), flap endonuclease 1 (FEN1) and DNA ligase I (LigI) that complete Okazaki fragment processing and joining, it is not known how the activities of these enzymes are coordinated. Here we describe a novel interaction between Pol δ and LigI that is critical for Okazaki fragment joining in vitro. Both LigI and FEN1 associate with PCNA-Pol δ during gap-filling synthesis, suggesting that gap-filling synthesis is carried out by a complex of PCNA, Pol δ, FEN1 and LigI. Following ligation, PCNA and LigI remain on the DNA, indicating that Pol δ and FEN1 dissociate during 5' end processing and that LigI engages PCNA at the DNA nick generated by FEN1 and Pol δ. Thus, dynamic PCNA complexes coordinate Okazaki fragment synthesis and processing with PCNA and LigI forming a terminal structure of two linked protein rings encircling the ligated DNA.


Asunto(s)
ADN Ligasa (ATP)/genética , ADN Polimerasa III/genética , Endonucleasas de ADN Solapado/genética , Antígeno Nuclear de Célula en Proliferación/genética , ADN/biosíntesis , ADN/genética , ADN Ligasas/genética , ADN Polimerasa I/genética , Replicación del ADN/genética , Genoma Humano/genética , Holoenzimas/genética , Humanos , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Unión Proteica/genética , Proteína de Replicación C/genética
2.
DNA Repair (Amst) ; 43: 18-23, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27235626

RESUMEN

DNA ligases are attractive therapeutics because of their involvement in completing the repair of almost all types of DNA damage. A series of DNA ligase inhibitors with differing selectivity for the three human DNA ligases were identified using a structure-based approach with one of these inhibitors being used to inhibit abnormal DNA ligase IIIα-dependent repair of DNA double-strand breaks (DSB)s in breast cancer, neuroblastoma and leukemia cell lines. Raghavan and colleagues reported the characterization of a derivative of one of the previously identified DNA ligase inhibitors, which they called SCR7 (designated SCR7-R in our experiments using SCR7). SCR7 appeared to show increased selectivity for DNA ligase IV, inhibit the repair of DSBs by the DNA ligase IV-dependent non-homologous end-joining (NHEJ) pathway, reduce tumor growth, and increase the efficacy of DSB-inducing therapeutic modalities in mouse xenografts. In attempting to synthesize SCR7, we encountered problems with the synthesis procedures and discovered discrepancies in its reported structure. We determined the structure of a sample of SCR7 and a related compound, SCR7-G, that is the major product generated by the published synthesis procedure for SCR7. We also found that SCR7-G has the same structure as the compound (SCR7-X) available from a commercial vendor (XcessBio). The various SCR7 preparations had similar activity in DNA ligation assay assays, exhibiting greater activity against DNA ligases I and III than DNA ligase IV. Furthermore, SCR7-R failed to inhibit DNA ligase IV-dependent V(D)J recombination in a cell-based assay. Based on our results, we conclude that SCR7 and the SCR7 derivatives are neither selective nor potent inhibitors of DNA ligase IV.


Asunto(s)
Antineoplásicos/farmacología , ADN Ligasa (ATP)/genética , ADN/genética , Inhibidores Enzimáticos/farmacología , Pirimidinas/farmacología , Bases de Schiff/farmacología , Animales , Antineoplásicos/síntesis química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , ADN/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades/efectos de los fármacos , ADN Ligasa (ATP)/antagonistas & inhibidores , ADN Ligasa (ATP)/metabolismo , Inhibidores Enzimáticos/síntesis química , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Leucocitos/patología , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Pirimidinas/síntesis química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Bases de Schiff/síntesis química , Especificidad por Sustrato , Carga Tumoral/efectos de los fármacos , Recombinación V(D)J/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA