Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Cell Rep ; 20(5): 1187-1200, 2017 08 01.
Article En | MEDLINE | ID: mdl-28768202

Pat1 RNA-binding proteins, enriched in processing bodies (P bodies), are key players in cytoplasmic 5' to 3' mRNA decay, activating decapping of mRNA in complex with the Lsm1-7 heptamer. Using co-immunoprecipitation and immunofluorescence approaches coupled with RNAi, we provide evidence for a nuclear complex of Pat1b with the Lsm2-8 heptamer, which binds to the spliceosomal U6 small nuclear RNA (snRNA). Furthermore, we establish the set of interactions connecting Pat1b/Lsm2-8/U6 snRNA/SART3 and additional U4/U6.U5 tri-small nuclear ribonucleoprotein particle (tri-snRNP) components in Cajal bodies, the site of snRNP biogenesis. RNA sequencing following Pat1b depletion revealed the preferential upregulation of mRNAs normally found in P bodies and enriched in 3' UTR AU-rich elements. Changes in >180 alternative splicing events were also observed, characterized by skipping of regulated exons with weak donor sites. Our data demonstrate the dual role of a decapping enhancer in pre-mRNA processing as well as in mRNA decay via distinct nuclear and cytoplasmic Lsm complexes.


DNA-Binding Proteins/metabolism , Multiprotein Complexes/metabolism , N-Terminal Acetyltransferase C/metabolism , Proto-Oncogene Proteins/metabolism , RNA Precursors/metabolism , RNA Processing, Post-Transcriptional/physiology , RNA-Binding Proteins/metabolism , Ribonucleoprotein, U4-U6 Small Nuclear/metabolism , Ribonucleoproteins, Small Nuclear/metabolism , AU Rich Elements/physiology , DNA-Binding Proteins/genetics , HEK293 Cells , Humans , Multiprotein Complexes/genetics , N-Terminal Acetyltransferase C/genetics , Proto-Oncogene Proteins/genetics , RNA Precursors/genetics , RNA-Binding Proteins/genetics , Ribonucleoprotein, U4-U6 Small Nuclear/genetics , Ribonucleoproteins, Small Nuclear/genetics
2.
Nucleic Acids Res ; 44(13): 6318-34, 2016 07 27.
Article En | MEDLINE | ID: mdl-27342281

4E-Transporter binds eIF4E via its consensus sequence YXXXXLΦ, shared with eIF4G, and is a nucleocytoplasmic shuttling protein found enriched in P-(rocessing) bodies. 4E-T inhibits general protein synthesis by reducing available eIF4E levels. Recently, we showed that 4E-T bound to mRNA however represses its translation in an eIF4E-independent manner, and contributes to silencing of mRNAs targeted by miRNAs. Here, we address further the mechanism of translational repression by 4E-T by first identifying and delineating the interacting sites of its major partners by mass spectrometry and western blotting, including DDX6, UNR, unrip, PAT1B, LSM14A and CNOT4. Furthermore, we document novel binding between 4E-T partners including UNR-CNOT4 and unrip-LSM14A, altogether suggesting 4E-T nucleates a complex network of RNA-binding protein interactions. In functional assays, we demonstrate that joint deletion of two short conserved motifs that bind UNR and DDX6 relieves repression of 4E-T-bound mRNA, in part reliant on the 4E-T-DDX6-CNOT1 axis. We also show that the DDX6-4E-T interaction mediates miRNA-dependent translational repression and de novo P-body assembly, implying that translational repression and formation of new P-bodies are coupled processes. Altogether these findings considerably extend our understanding of the role of 4E-T in gene regulation, important in development and neurogenesis.


DEAD-box RNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Eukaryotic Initiation Factor-4E/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , Protein Biosynthesis , Proto-Oncogene Proteins/metabolism , RNA-Binding Proteins/metabolism , Transcription Factors/metabolism , Amino Acid Sequence/genetics , Binding Sites , DEAD-box RNA Helicases/genetics , DNA-Binding Proteins/genetics , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4G/genetics , Eukaryotic Initiation Factor-4G/metabolism , Gene Expression Regulation/genetics , HEK293 Cells , HeLa Cells , Humans , Nucleocytoplasmic Transport Proteins/genetics , Protein Binding , Protein Interaction Maps/genetics , Proto-Oncogene Proteins/genetics , RNA, Small Interfering/genetics , RNA-Binding Proteins/genetics , Transcription Factors/genetics
3.
Nucleic Acids Res ; 42(5): 3298-313, 2014 Mar.
Article En | MEDLINE | ID: mdl-24335285

A key player in translation initiation is eIF4E, the mRNA 5' cap-binding protein. 4E-Transporter (4E-T) is a recently characterized eIF4E-binding protein, which regulates specific mRNAs in several developmental model systems. Here, we first investigated the role of its enrichment in P-bodies and eIF4E-binding in translational regulation in mammalian cells. Identification of the conserved C-terminal sequences that target 4E-T to P-bodies was enabled by comparison of vertebrate proteins with homologues in Drosophila (Cup and CG32016) and Caenorhabditis elegans by sequence and cellular distribution. In tether function assays, 4E-T represses bound mRNA translation, in a manner independent of these localization sequences, or of endogenous P-bodies. Quantitative polymerase chain reaction and northern blot analysis verified that bound mRNA remained intact and polyadenylated. Ectopic 4E-T reduces translation globally in a manner dependent on eIF4E binding its consensus Y30X4L site. In contrast, tethered 4E-T continued to repress translation when eIF4E-binding was prevented by mutagenesis of YX4L, and modestly enhanced the decay of bound mRNA, compared with wild-type 4E-T, mediated by increased binding of CNOT1/7 deadenylase subunits. As depleting 4E-T from HeLa cells increased steady-state translation, in part due to relief of microRNA-mediated silencing, this work demonstrates the conserved yet unconventional mechanism of 4E-T silencing of particular subsets of mRNAs.


MicroRNAs/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , Protein Biosynthesis , RNA Interference , Drosophila Proteins/analysis , Drosophila Proteins/chemistry , Eukaryotic Initiation Factor-4E/metabolism , HeLa Cells , Humans , Nucleocytoplasmic Transport Proteins/analysis , Nucleocytoplasmic Transport Proteins/chemistry , RNA Stability , RNA, Messenger/metabolism , RNA, Viral/metabolism , Repressor Proteins/analysis , Repressor Proteins/chemistry
4.
PLoS One ; 8(8): e72761, 2013.
Article En | MEDLINE | ID: mdl-23991149

In addition to the canonical eIF4E cap-binding protein, eukaryotes have evolved sequence-related variants with distinct features, some of which have been shown to negatively regulate translation of particular mRNAs, but which remain poorly characterised. Mammalian eIF4E proteins have been divided into three classes, with class I representing the canonical cap-binding protein eIF4E1. eIF4E1 binds eIF4G to initiate translation, and other eIF4E-binding proteins such as 4E-BPs and 4E-T prevent this interaction by binding eIF4E1 with the same consensus sequence YX 4Lϕ. We investigate here the interaction of human eIF4E2 (4EHP), a class II eIF4E protein, which binds the cap weakly, with eIF4E-transporter protein, 4E-T. We first show that ratios of eIF4E1:4E-T range from 50:1 to 15:1 in HeLa and HEK293 cells respectively, while those of eIF4E2:4E-T vary from 6:1 to 3:1. We next provide evidence that eIF4E2 binds 4E-T in the yeast two hybrid assay, as well as in pull-down assays and by recruitment to P-bodies in mammalian cells. We also show that while both eIF4E1 and eIF4E2 bind 4E-T via the canonical YX 4Lϕ sequence, nearby downstream sequences also influence eIF4E:4E-T interactions. Indirect immunofluorescence was used to demonstrate that eIF4E2, normally homogeneously localised in the cytoplasm, does not redistribute to stress granules in arsenite-treated cells, nor to P-bodies in Actinomycin D-treated cells, in contrast to eIF4E1. Moreover, eIF4E2 shuttles through nuclei in a Crm1-dependent manner, but in an 4E-T-independent manner, also unlike eIF4E1. Altogether we conclude that while both cap-binding proteins interact with 4E-T, and can be recruited by 4E-T to P-bodies, eIF4E2 functions are likely to be distinct from those of eIF4E1, both in the cytoplasm and nucleus, further extending our understanding of mammalian class I and II cap-binding proteins.


Nucleocytoplasmic Transport Proteins/metabolism , RNA Cap-Binding Proteins/metabolism , Amino Acid Sequence , Animals , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Eukaryotic Initiation Factor-4E , HEK293 Cells , HeLa Cells , Humans , Molecular Sequence Data , Protein Binding , Sequence Homology, Amino Acid , Two-Hybrid System Techniques , Xenopus
5.
Nat Neurosci ; 14(1): 17-8, 2011 Jan.
Article En | MEDLINE | ID: mdl-21170052

In the closed structure of the P2X cation channel, three α-helical transmembrane domains cross the membrane obliquely. In rat P2X2 receptors, these intersect at Thr(339). Replacing Thr(339) by lysine in one, two or three subunits progressively increased chloride permeability and reduced unitary conductance. This implies that the closed-open transition involves a symmetrical separation of the three subunits and that Thr(339) from each subunit contributes symmetrically to the open channel permeation pathway.


Cell Membrane Permeability/physiology , Membrane Potentials/physiology , Receptors, Purinergic P2X2/physiology , Adenosine Triphosphate/physiology , Amino Acid Substitution/physiology , Animals , Chlorides/physiology , Rats
6.
J Neurosci ; 29(45): 14257-64, 2009 Nov 11.
Article En | MEDLINE | ID: mdl-19906973

Membrane ion channels activated by extracellular ATP (P2X receptors) are widely distributed in the nervous system. Their molecular architecture is fundamentally distinct from that of the nicotinic or glutamate receptor families. We have measured single-channel currents, spontaneous gating, and rectification of rat P2X2 receptor in which polar and charged residues of the second transmembrane domain (TM2) were systematically probed by mutagenesis. The results suggest that Asn(333) and Asp(349) lie respectively in external and internal vestibules. Substitutions at Asn(333), Thr(336), and Ser(340) were particularly likely to cause spontaneously active channels. At Thr(336), Thr(339), and Ser(340), the introduction of positive charge (Arg, Lys, or His, or Cys followed by treatment with 2-aminoethyl methanethiosulphonate) greatly enhanced outward currents, suggesting that side-chains of these three residues are exposed in the permeation pathway of the open channel. These functional findings are interpreted in the context of the recently reported 3.1 A crystal structure of the zebrafish P2X4.1 receptor in the closed state. They imply that the gate is formed by residues Asn(333) to Thr(339) and that channel opening involves a counter-clockwise rotation and separation of the TM2 helices.


Receptors, Purinergic P2/chemistry , Receptors, Purinergic P2/metabolism , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Animals , Blotting, Western , Cell Line , Humans , Membrane Potentials/physiology , Models, Molecular , Molecular Sequence Data , Mutation , Patch-Clamp Techniques , Protein Conformation , Rats , Receptors, Purinergic P2/genetics , Receptors, Purinergic P2X2 , Sequence Homology, Amino Acid , Time Factors
7.
J Biol Chem ; 283(44): 29841-6, 2008 Oct 31.
Article En | MEDLINE | ID: mdl-18765669

P2X(1) receptors belong to a family of cation channels gated by extracellular ATP; they are found inter alia in smooth muscle, platelets, and immune cells. Suramin has been widely used as an antagonist at P2X receptors, and its analog 4,4',4'',4'''-[carbonylbis(imino-5,1,3-benzenetriylbis(carbonylimino))] tetrakis-benzene-1,3-disulfonic acid (NF449) is selective for the P2X(1) subtype. Human and mouse P2X(1) receptors were expressed in human embryonic kidney cells, and membrane currents evoked by ATP were recorded. ATP (10 nm to 100 microm) was applied only once to each cell, to avoid the profound desensitization exhibited by P2X(1) receptors. Suramin (10 microm) and NF449 (3-300 nM) effectively blocked the human receptor. Suramin had little effect on the mouse receptor. Suramin and NF449 are polysulfonates, with six and eight negative charges, respectively. We hypothesized that species differences might result from differences in positive residues presented by the large receptor ectodomain. Four lysines in the human sequence (Lys(111), Lys(127), Lys(138), and Lys(148)) were changed individually and together to their counterparts in the mouse sequence. The substitution K138E, either alone or together with K111Q, K127Q, and K148N, reduced the sensitivity to block by both suramin and NF449. Conversely, when lysine was introduced into the mouse receptor, the sensitivity to block by suramin and NF449 was much increased for E138K, but not for Q111K, Q127K, or N148K. The results explain the marked species difference in antagonist sensitivity and identify an ectodomain lysine residue that plays a key role in the binding of both suramin and NF449 to P2X(1) receptors.


Receptors, Purinergic P2/chemistry , Suramin/pharmacology , Amino Acid Sequence , Animals , Benzenesulfonates/pharmacology , Cell Line , Humans , Kidney/embryology , Lysine/chemistry , Mice , Molecular Sequence Data , Muscle, Smooth/metabolism , Patch-Clamp Techniques , Protein Structure, Tertiary , Receptors, Purinergic P2/metabolism , Receptors, Purinergic P2X , Sequence Homology, Amino Acid
8.
Biochem J ; 416(1): 137-43, 2008 Nov 15.
Article En | MEDLINE | ID: mdl-18616429

The final 25 amino acids of the ectodomain of the P2X receptors, immediately prior to the second TM (transmembrane domain) (pre-TM2: Arg(304)-Ile(328) in rat P2X(2)), are highly conserved. Whole-cell patch clamp recordings showed that single cysteine substitutions in the N-terminal half of pre-TM2 (Arg(304)-Ile(314)) led to loss of function at Arg(304), Leu(306), Lys(308) and Ile(312). Cysteine substitutions within this region also resulted in a significant reduction in the apparent molecular mass of receptors, due to loss of complex glycosylation at the nearby acceptor site Asn(298), which was not seen for the C-terminal portion of pre-TM2 (Asp(315)-Ile(328)). The reduction in complex glycosylation was not due to reduced cell-surface presentation, demonstrating that glycosylation at Asn(298) was acting as a sensor of subtle changes in receptor conformation within the pre-TM2 region. When this N-glycan site was repositioned closer to the plasma membrane by mutagenesis (N298S together with G299N, T300N, T301N or T303N), glycosylation was restored at G299N and T300N, but was impaired for T301N and completely absent for T303N. These results suggest that the region in the vicinity of Asp(315) is at the plasma membrane interface and that the N-terminal portion of pre-TM2 (Arg(304)-Ile(314)) is important for the correct conformation of the receptor at the extracellular face of the membrane.


Asparagine/chemistry , Receptors, Purinergic P2/chemistry , Amino Acid Sequence , Animals , Glycosylation , Humans , Kidney/embryology , Protein Conformation , Protein Structure, Tertiary , Rats , Receptors, Purinergic P2/genetics , Receptors, Purinergic P2/physiology , Receptors, Purinergic P2X2
9.
J Neurosci ; 27(47): 12916-23, 2007 Nov 21.
Article En | MEDLINE | ID: mdl-18032665

P2X2 receptors are ATP-gated ion channels widely expressed by neurons. Thr339 lies in the second of the two transmembrane domains of the rat P2X2 receptor protein, and is likely to be close to the narrowest part of the pore. Single-channel and whole-cell recording after expression in human embryonic kidney 293 cells showed that P2X2[T339S] receptors had pronounced spontaneous channel openings that were never seen in wild-type P2X2 receptors. P2X2[T339S] receptors were 10-fold more sensitive than wild type to exogenous ATP, and alphabeta meATP also increased channel opening. Two conserved ectodomain lysine residues (Lys69 and Lys308) are critical for function and have been proposed to contribute to the ATP binding site of P2X receptors. The spontaneous opening of P2X2[K69A/T339S] receptors was not different than that seen in P2X2[T339S], but for P2X2[K308A/T339S] the spontaneous activity was absent. Suramin, which is a noncompetitive antagonist at wild-type P2X2 receptors, had a pronounced agonist action at both P2X2[T339S] and P2X2[K69A/T339S] receptors but not at P2X2[K308A/T339S]. 2',3'-O-O-(2,4,6-Trinitrophenyl)-ATP (TNP-ATP), which is a competitive agonist at wild-type receptors, was also an agonist at P2X2[T339S] receptors, but not at either double mutant. The results indicate that the T339S mutation substantially destabilizes the closed channel and suggest an important role in channel gating. The correction of this gating defect, in the absence of any agonist, by the second mutation K308A shows that Lys308 is also involved in channel gating. A similar interpretation can account for the results with suramin and TNP-ATP.


Amino Acid Substitution/genetics , Cell Membrane/genetics , Ion Channel Gating/genetics , Lysine/genetics , Receptors, Purinergic P2/genetics , Serine/genetics , Threonine/genetics , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/pharmacology , Amino Acid Substitution/drug effects , Animals , Binding Sites/drug effects , Binding Sites/genetics , Cell Line , Cell Membrane/drug effects , Cell Membrane/physiology , Humans , Ion Channel Gating/drug effects , Lysine/physiology , Mutagenesis , Protein Binding/drug effects , Protein Binding/genetics , Protein Structure, Tertiary/drug effects , Protein Structure, Tertiary/genetics , Protein Structure, Tertiary/physiology , Purinergic P2 Receptor Antagonists , Rats , Receptors, Purinergic P2/physiology , Receptors, Purinergic P2X2 , Suramin/pharmacology
...