Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros










Intervalo de año de publicación
1.
J Peripher Nerv Syst ; 28 Suppl 3: S3-S11, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37272548

RESUMEN

Action potential propagation along myelinated axons depends on the geometry of the myelin unit and the division of the underlying axon to specialized domains. The latter include the nodes of Ranvier (NOR), the paranodal junction (PNJ) flanking the nodes, and the adjacent juxtaparanodal region that is located below the compact myelin of the internode. Each of these domains contains a unique composition of axoglial adhesion molecules (CAMs) and cytoskeletal scaffolding proteins, which together direct the placement of specific ion channels at the nodal and juxtaparanodal axolemma. In the last decade it has become increasingly clear that antibodies to some of these axoglial CAMs cause immune-mediated neuropathies. In the current review we detail the molecular composition of the NOR and adjacent membrane domains, describe the function of different CAM complexes that mediate axon-glia interactions along the myelin unit, and discuss their involvement and the underlying mechanisms taking place in peripheral nerve pathologies. This growing group of pathologies represent a new type of neuropathies termed "nodopathies" or "paranodopathies" that are characterized by unique clinical and molecular features which together reflect the mechanisms underlying the molecular assembly and maintenance of this specialized membrane domain.


Asunto(s)
Axones , Nódulos de Ranvier , Humanos , Nódulos de Ranvier/patología , Vaina de Mielina , Neuroglía , Nervios Periféricos
3.
Science ; 374(6565): eabh2858, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34648330

RESUMEN

In the brain's gray matter, astrocytes regulate synapse properties, but their role is unclear for the white matter, where myelinated axons rapidly transmit information between gray matter areas. We found that in rodents, neuronal activity raised the intracellular calcium concentration ([Ca2+]i) in astrocyte processes located near action potential­generating sites in the axon initial segment (AIS) and nodes of Ranvier of myelinated axons. This released adenosine triphosphate, which was converted extracellularly to adenosine and thus, through A2a receptors, activated HCN2-containing cation channels that regulate two aspects of myelinated axon function: excitability of the AIS and speed of action potential propagation. Variations in astrocyte-derived adenosine level between wake and sleep states or during energy deprivation could thus control white matter information flow and neural circuit function.


Asunto(s)
Adenosina Trifosfato/metabolismo , Astrocitos/fisiología , Axones/fisiología , Calcio/fisiología , Excitabilidad Cortical , Conducción Nerviosa , Potenciales de Acción , Animales , Ratones , Ratones Transgénicos , Técnicas de Placa-Clamp , Ratas Sprague-Dawley
4.
Elife ; 102021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34240706

RESUMEN

Voltage-gated sodium channels cluster in macromolecular complexes at nodes of Ranvier to promote rapid nerve impulse conduction in vertebrate nerves. Node assembly in peripheral nerves is thought to be initiated at heminodes at the extremities of myelinating Schwann cells, and fusion of heminodes results in the establishment of nodes. Here we show that assembly of 'early clusters' of nodal proteins in the murine axonal membrane precedes heminode formation. The neurofascin (Nfasc) proteins are essential for node assembly, and the formation of early clusters also requires neuronal Nfasc. Early clusters are mobile and their proteins are dynamically recruited by lateral diffusion. They can undergo fusion not only with each other but also with heminodes, thus contributing to the development of nodes in peripheral axons. The formation of early clusters constitutes the earliest stage in peripheral node assembly and expands the repertoire of strategies that have evolved to establish these essential structures.


Asunto(s)
Interneuronas/metabolismo , Proteína Nodal/metabolismo , Animales , Axones/metabolismo , Moléculas de Adhesión Celular/metabolismo , Femenino , Ganglios Espinales , Masculino , Ratones , Ratones Endogámicos C57BL , Factores de Crecimiento Nervioso/metabolismo , Conducción Nerviosa , Sistema Nervioso Periférico , Células de Schwann/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo
5.
Dev Cell ; 56(9): 1346-1358.e6, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33945785

RESUMEN

Myelination is essential for central nervous system (CNS) formation, health, and function. Emerging evidence of oligodendrocyte heterogeneity in health and disease and divergent CNS gene expression profiles between mice and humans supports the development of experimentally tractable human myelination systems. Here, we developed human iPSC-derived myelinating organoids ("myelinoids") and quantitative tools to study myelination from oligodendrogenesis through to compact myelin formation and myelinated axon organization. Using patient-derived cells, we modeled a monogenetic disease of myelinated axons (Nfasc155 deficiency), recapitulating impaired paranodal axo-glial junction formation. We also validated the use of myelinoids for pharmacological assessment of myelination-both at the level of individual oligodendrocytes and globally across whole myelinoids-and demonstrated reduced myelination in response to suppressed synaptic vesicle release. Our study provides a platform to investigate human myelin development, disease, and adaptive myelination.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Vaina de Mielina/fisiología , Organoides/fisiología , Axones/metabolismo , Axones/ultraestructura , Humanos , Vaina de Mielina/ultraestructura , Factores de Crecimiento Nervioso/deficiencia , Factores de Crecimiento Nervioso/metabolismo , Organoides/ultraestructura , Toxina Tetánica/farmacología , Factores de Tiempo
6.
J Cell Biol ; 220(4)2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33538762

RESUMEN

Neuronal remodeling and myelination are two fundamental processes during neurodevelopment. How they influence each other remains largely unknown, even though their coordinated execution is critical for circuit function and often disrupted in neuropsychiatric disorders. It is unclear whether myelination stabilizes axon branches during remodeling or whether ongoing remodeling delays myelination. By modulating synaptic transmission, cytoskeletal dynamics, and axonal transport in mouse motor axons, we show that local axon remodeling delays myelination onset and node formation. Conversely, glial differentiation does not determine the outcome of axon remodeling. Delayed myelination is not due to a limited supply of structural components of the axon-glial unit but rather is triggered by increased transport of signaling factors that initiate myelination, such as neuregulin. Further, transport of promyelinating signals is regulated via local cytoskeletal maturation related to activity-dependent competition. Our study reveals an axon branch-specific fine-tuning mechanism that locally coordinates axon remodeling and myelination.


Asunto(s)
Axones , Neuronas Motoras/metabolismo , Vaina de Mielina/metabolismo , Animales , Ratones , Ratones Transgénicos , Transmisión Sináptica
7.
Elife ; 92020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32903174

RESUMEN

Ion channel complexes promote action potential initiation at the mammalian axon initial segment (AIS), and modulation of AIS size by recruitment or loss of proteins can influence neuron excitability. Although endocytosis contributes to AIS turnover, how membrane proteins traffic to this proximal axonal domain is incompletely understood. Neurofascin186 (Nfasc186) has an essential role in stabilising the AIS complex to the proximal axon, and the AIS channel protein Kv7.3 regulates neuron excitability. Therefore, we have studied how these proteins reach the AIS. Vesicles transport Nfasc186 to the soma and axon terminal where they fuse with the neuronal plasma membrane. Nfasc186 is highly mobile after insertion in the axonal membrane and diffuses bidirectionally until immobilised at the AIS through its interaction with AnkyrinG. Kv7.3 is similarly recruited to the AIS. This study reveals how key proteins are delivered to the AIS and thereby how they may contribute to its functional plasticity.


Asunto(s)
Segmento Inicial del Axón/metabolismo , Moléculas de Adhesión Celular/metabolismo , Membrana Celular/metabolismo , Canal de Potasio KCNQ3/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Animales , Axones/metabolismo , Células Cultivadas , Cerebelo/citología , Cerebelo/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley
8.
Cell Rep ; 32(6): 107988, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32783927

RESUMEN

Cellular hyperexcitability is a salient feature of fragile X syndrome animal models. The cellular basis of hyperexcitability and how it responds to changing activity states is not fully understood. Here, we show increased axon initial segment length in CA1 of the Fmr1-/y mouse hippocampus, with increased cellular excitability. This change in length does not result from reduced AIS plasticity, as prolonged depolarization induces changes in AIS length independent of genotype. However, depolarization does reduce cellular excitability, the magnitude of which is greater in Fmr1-/y neurons. Finally, we observe reduced functional inputs from the entorhinal cortex, with no genotypic difference in the firing rates of CA1 pyramidal neurons. This suggests that AIS-dependent hyperexcitability in Fmr1-/y mice may result from adaptive or homeostatic regulation induced by reduced functional synaptic connectivity. Thus, while AIS length and intrinsic excitability contribute to cellular hyperexcitability, they may reflect a homeostatic mechanism for reduced synaptic input onto CA1 neurons.


Asunto(s)
Síndrome del Cromosoma X Frágil/genética , Células Piramidales/metabolismo , Animales , Modelos Animales de Enfermedad , Homeostasis , Ratones
9.
Elife ; 92020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32130108

RESUMEN

Proteome and transcriptome analyses aim at comprehending the molecular profiles of the brain, its cell-types and subcellular compartments including myelin. Despite the relevance of the peripheral nervous system for normal sensory and motor capabilities, analogous approaches to peripheral nerves and peripheral myelin have fallen behind evolving technical standards. Here we assess the peripheral myelin proteome by gel-free, label-free mass-spectrometry for deep quantitative coverage. Integration with RNA-Sequencing-based developmental mRNA-abundance profiles and neuropathy disease genes illustrates the utility of this resource. Notably, the periaxin-deficient mouse model of the neuropathy Charcot-Marie-Tooth 4F displays a highly pathological myelin proteome profile, exemplified by the discovery of reduced levels of the monocarboxylate transporter MCT1/SLC16A1 as a novel facet of the neuropathology. This work provides the most comprehensive proteome resource thus far to approach development, function and pathology of peripheral myelin, and a straightforward, accurate and sensitive workflow to address myelin diversity in health and disease.


Asunto(s)
Proteínas de la Membrana/metabolismo , Miopatías Mitocondriales/metabolismo , Proteínas de la Mielina/metabolismo , Vaina de Mielina/metabolismo , Nervios Periféricos/patología , Retinitis Pigmentosa/metabolismo , Animales , Enfermedades Desmielinizantes/patología , Regulación de la Expresión Génica , Genotipo , Proteínas de la Membrana/genética , Ratones , Proteínas de la Mielina/genética , Vaina de Mielina/química , Proteoma , Transcriptoma
10.
Dev Cell ; 51(6): 730-744.e6, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31761670

RESUMEN

Selection of the correct targets for myelination and regulation of myelin sheath growth are essential for central nervous system (CNS) formation and function. Through a genetic screen in zebrafish and complementary analyses in mice, we find that loss of oligodendrocyte Neurofascin leads to mistargeting of myelin to cell bodies, without affecting targeting to axons. In addition, loss of Neurofascin reduces CNS myelination by impairing myelin sheath growth. Time-lapse imaging reveals that the distinct myelinating processes of individual oligodendrocytes can engage in target selection and sheath growth at the same time and that Neurofascin concomitantly regulates targeting and growth. Disruption to Caspr, the neuronal binding partner of oligodendrocyte Neurofascin, also impairs myelin sheath growth, likely reflecting its association in an adhesion complex at the axon-glial interface with Neurofascin. Caspr does not, however, affect myelin targeting, further indicating that Neurofascin independently regulates distinct aspects of CNS myelination by individual oligodendrocytes in vivo.


Asunto(s)
Sistema Nervioso Central/citología , Vaina de Mielina/metabolismo , Neuronas/metabolismo , Oligodendroglía/citología , Animales , Axones/metabolismo , Cuerpo Celular/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Neurogénesis/fisiología , Neuroglía/metabolismo , Pez Cebra/metabolismo
11.
Front Mol Neurosci ; 12: 84, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024253

RESUMEN

The process of myelination in the nervous system requires a coordinated formation of both transient and stable supramolecular complexes. Myelin-specific proteins play key roles in these assemblies, which may link membranes to each other or connect the myelinating cell cytoskeleton to the extracellular matrix. The myelin protein periaxin is known to play an important role in linking the Schwann cell cytoskeleton to the basal lamina through membrane receptors, such as the dystroglycan complex. Mutations that truncate periaxin from the C terminus cause demyelinating peripheral neuropathy, Charcot-Marie-Tooth (CMT) disease type 4F, indicating a function for the periaxin C-terminal region in myelination. We identified the cytoplasmic domain of ß4 integrin as a specific high-affinity binding partner for periaxin. The C-terminal region of periaxin remains unfolded and flexible when bound to the third fibronectin type III domain of ß4 integrin. Our data suggest that periaxin is able to link the Schwann cell cytoplasm to the basal lamina through a two-pronged interaction via different membrane protein complexes, which bind close to the N and C terminus of this elongated, flexible molecule.

12.
Hum Mol Genet ; 27(21): 3669-3674, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30124836

RESUMEN

The Neurofascins (NFASCs) are a family of proteins encoded by alternative transcripts of NFASC that cooperate in the assembly of the node of Ranvier in myelinated nerves. Differential expression of NFASC in neurons and glia presents a remarkable example of cell-type specific expression of protein isoforms with a common overall function. In mice there are three NFASC isoforms: Nfasc186 and Nfasc140, located in the axonal membrane at the node of Ranvier, and Nfasc155, a glial component of the paranodal axoglial junction. Nfasc186 and Nfasc155 are the major isoforms at mature nodes and paranodes, respectively. Conditional deletion of the glial isoform Nfasc155 in mice causes severe motor coordination defects and death at 16-17 days after birth. We describe a proband with severe congenital hypotonia, contractures of fingers and toes, and no reaction to touch or pain. Whole exome sequencing revealed a homozygous NFASC variant chr1:204953187-C>T (rs755160624). The variant creates a premature stop codon in 3 out of four NFASC human transcripts and is predicted to specifically eliminate Nfasc155 leaving neuronal Neurofascin intact. The selective absence of Nfasc155 and disruption of the paranodal junction was confirmed by an immunofluorescent study of skin biopsies from the patient versus control. We propose that the disease in our proband is the first reported example of genetic deficiency of glial Neurofascin isoforms in humans and that the severity of the condition reflects the importance of the Nfasc155 in forming paranodal axoglial junctions and in determining the structure and function of the node of Ranvier.


Asunto(s)
Moléculas de Adhesión Celular/genética , Uniones Intercelulares/metabolismo , Hipotonía Muscular/genética , Mutación , Factores de Crecimiento Nervioso/genética , Enfermedades del Sistema Nervioso/genética , Neuroglía/metabolismo , Animales , Condicionamiento Psicológico , Análisis Mutacional de ADN , Femenino , Homocigoto , Humanos , Lactante , Uniones Intercelulares/genética , Ratones , Hipotonía Muscular/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Polonia , Isoformas de Proteínas , Síndrome
13.
Wellcome Open Res ; 3: 20, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29623298

RESUMEN

Charcot-Marie-Tooth (CMT) disease comprises up to 80 monogenic inherited neuropathies of the peripheral nervous system (PNS) that collectively result in demyelination and axon degeneration. The majority of CMT disease is primarily either dysmyelinating or demyelinating in which mutations affect the ability of Schwann cells to either assemble or stabilize peripheral nerve myelin. CMT4F is a recessive demyelinating form of the disease caused by mutations in the Periaxin ( PRX) gene . Periaxin (Prx) interacts with Dystrophin Related Protein 2 (Drp2) in an adhesion complex with the laminin receptor Dystroglycan (Dag). In mice the Prx/Drp2/Dag complex assembles adhesive domains at the interface between the abaxonal surface of the myelin sheath and the cytoplasmic surface of the Schwann cell plasma membrane. Assembly of these appositions causes the formation of cytoplasmic channels called Cajal bands beneath the surface of the Schwann cell plasma membrane. Loss of either Periaxin or Drp2 disrupts the appositions and causes CMT in both mouse and man. In a mouse model of CMT4F, complete loss of Periaxin first prevents normal Schwann cell elongation resulting in abnormally short internodal distances which can reduce nerve conduction velocity, and subsequently precipitates demyelination. Distinct functional domains responsible for Periaxin homodimerization and interaction with Drp2 to form the Prx/Drp2/Dag complex have been identified at the N-terminus of Periaxin. However, CMT4F can also be caused by a mutation that results in the truncation of Periaxin at the extreme C-terminus with the loss of 391 amino acids. By modelling this in mice, we show that loss of the C-terminus of Periaxin results in a surprising reduction in Drp2. This would be predicted to cause the observed instability of both appositions and myelin, and contribute significantly to the clinical phenotype in CMT4F.

14.
Neuroscientist ; 24(2): 104-110, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28534438

RESUMEN

Vertebrate nervous systems rely on rapid nerve impulse transmission to support their complex functions. Fast conduction depends on ensheathment of nerve axons by myelin-forming glia and the clustering of high concentrations of voltage-gated sodium channels (Nav) in the axonal gaps between myelinated segments. These gaps are the nodes of Ranvier. Depolarization of the axonal membrane initiates the action potential responsible for impulse transmission, and the Nav help ensure that this is restricted to nodes. In the central nervous system, the formation of nodes and the clustering of Nav in nodal complexes is achieved when oligodendrocytes extend their processes and ultimately ensheath axons with myelin. However, the mechanistic relationship between myelination and the formation of nodal complexes is unclear. Here we review recent work in the central nervous system that shows that axons, by assembling distinct cytoskeletal interfaces, are not only active participants in oligodendrocyte process migration but are also significant contributors to the mechanisms by which myelination causes Nav clustering. We also discuss how the segregation of membrane protein complexes through their interaction with distinct cytoskeletal complexes may play a wider role in establishing surface domains in axons.


Asunto(s)
Axones/metabolismo , Citoesqueleto/metabolismo , Nódulos de Ranvier/metabolismo , Animales , Sistema Nervioso Central/metabolismo
15.
Curr Biol ; 27(7): 1068-1073, 2017 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-28318976

RESUMEN

Nodes of Ranvier in the axons of myelinated neurons are exemplars of the specialized cell surface domains typical of polarized cells. They are rich in voltage-gated sodium channels (Nav) and thus underpin rapid nerve impulse conduction in the vertebrate nervous system [1]. Although nodal proteins cluster in response to myelination, how myelin-forming glia influence nodal assembly is poorly understood. An axoglial adhesion complex comprising glial Neurofascin155 and axonal Caspr/Contactin flanks mature nodes [2]. We have shown that assembly of this adhesion complex at the extremities of migrating oligodendroglial processes promotes process convergence along the axon during central nervous system (CNS) node assembly [3]. Here we show that anchorage of this axoglial complex to the axon cytoskeleton is essential for efficient CNS node formation. When anchorage is disrupted, both the adaptor Protein 4.1B and the cytoskeleton protein ßII spectrin are mislocalized in the axon, and assembly of the node of Ranvier is significantly delayed. Nodal proteins and migrating oligodendroglial processes are no longer juxtaposed, and single detached nodal complexes replace the symmetrical heminodes found in both the CNS and peripheral nervous system (PNS) during development. We propose that axoglial adhesion complexes contribute to the formation of an interface between cytoskeletal elements enriched in Protein 4.1B and ßII spectrin and those enriched in nodal ankyrinG and ßIV spectrin. This clusters nascent nodal complexes at heminodes and promotes their timely coalescence to form the mature node of Ranvier. These data demonstrate a role for the axon cytoskeleton in the assembly of a critical neuronal domain, the node of Ranvier.


Asunto(s)
Sistema Nervioso Central/crecimiento & desarrollo , Nódulos de Ranvier/metabolismo , Animales , Axones/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Citoesqueleto/metabolismo , Ratones , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo
16.
J Physiol ; 595(6): 2147-2160, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28083896

RESUMEN

KEY POINTS: Neurodegenerative disorders can exhibit dysfunctional mitochondrial respiratory chain complex IV activity. Conditional deletion of cytochrome c oxidase, the terminal enzyme in the respiratory electron transport chain of mitochondria, from hippocampal dentate granule cells in mice does not affect low-frequency dentate to CA3 glutamatergic synaptic transmission. High-frequency dentate to CA3 glutamatergic synaptic transmission and feedforward inhibition are significantly attenuated in cytochrome c oxidase-deficient mice. Intact presynaptic mitochondrial function is critical for the short-term dynamics of mossy fibre to CA3 synaptic function. ABSTRACT: Neurodegenerative disorders are characterized by peripheral and central symptoms including cognitive impairments which have been associated with reduced mitochondrial function, in particular mitochondrial respiratory chain complex IV or cytochrome c oxidase activity. In the present study we conditionally removed a key component of complex IV, protohaem IX farnesyltransferase encoded by the COX10 gene, in granule cells of the adult dentate gyrus. Utilizing whole-cell patch-clamp recordings from morphologically identified CA3 pyramidal cells from control and complex IV-deficient mice, we found that reduced mitochondrial function did not result in overt deficits in basal glutamatergic synaptic transmission at the mossy-fibre synapse because the amplitude, input-output relationship and 50 ms paired-pulse facilitation were unchanged following COX10 removal from dentate granule cells. However, trains of stimuli given at high frequency (> 20 Hz) resulted in dramatic reductions in short-term facilitation and, at the highest frequencies (> 50 Hz), also reduced paired-pulse facilitation, suggesting a requirement for adequate mitochondrial function to maintain glutamate release during physiologically relevant activity patterns. Interestingly, local inhibition was reduced, suggesting the effect observed was not restricted to synapses with CA3 pyramidal cells via large mossy-fibre boutons, but rather to all synapses formed by dentate granule cells. Therefore, presynaptic mitochondrial function is critical for the short-term dynamics of synapse function, which may contribute to the cognitive deficits observed in pathological mitochondrial dysfunction.


Asunto(s)
Transferasas Alquil y Aril/fisiología , Región CA3 Hipocampal/fisiología , Giro Dentado/fisiología , Proteínas de la Membrana/fisiología , Fibras Musgosas del Hipocampo/fisiología , Células Piramidales/fisiología , Transferasas Alquil y Aril/genética , Animales , Proteínas de la Membrana/genética , Ratones Transgénicos , Transmisión Sináptica
17.
Elife ; 62017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-28134616

RESUMEN

A high density of Na+ channels at nodes of Ranvier is necessary for rapid and efficient action potential propagation in myelinated axons. Na+ channel clustering is thought to depend on two axonal cell adhesion molecules that mediate interactions between the axon and myelinating glia at the nodal gap (i.e., NF186) and the paranodal junction (i.e., Caspr). Here we show that while Na+ channels cluster at nodes in the absence of NF186, they fail to do so in double conditional knockout mice lacking both NF186 and the paranodal cell adhesion molecule Caspr, demonstrating that a paranodal junction-dependent mechanism can cluster Na+ channels at nodes. Furthermore, we show that paranode-dependent clustering of nodal Na+ channels requires axonal ßII spectrin which is concentrated at paranodes. Our results reveal that the paranodal junction-dependent mechanism of Na+channel clustering is mediated by the spectrin-based paranodal axonal cytoskeleton.


Asunto(s)
Citoesqueleto/metabolismo , Nódulos de Ranvier/química , Canales de Sodio/análisis , Animales , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Ratones Noqueados
18.
Neuromuscul Disord ; 27(3): 290-293, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27986399

RESUMEN

Antibodies to Contactin-1 and Neurofascin 155 (Nfasc155) have recently been associated with subsets of patients with chronic inflammatory demyelinating polyneuropathy (CIDP). Contactin-1 and Nfasc155 are cell adhesion molecules that constitute the septate-like junctions observed by electron microscopy in the paranodes of myelinated axons. Antibodies to Contactin-1 have been shown to affect the localization of paranodal proteins both in patient nerve biopsies and in animal models after passive transfer. However, it is unclear whether these antibodies alter the paranodal ultrastructure. We examined by electron microscopy sural nerve biopsies from two patients presenting with anti-Nfasc155 antibodies, and also four patients lacking antibodies, three normal controls, and five patients with other neuropathies. We found that patients with anti-Nfasc155 antibodies presented a selective loss of the septate-like junctions at all paranodes examined. Further, cellular processes penetrated into the expanded spaces between the paranodal myelin loops and the axolemma in these patients. These patients presented with important nerve conduction slowing and demyelination. Also, the reactivity of anti-Nfasc155 antibodies from these patients was abolished in neurofascin-deficient mice, confirming that the antibodies specifically target paranodal proteins. Our data indicate that anti-Nfasc155 destabilizes the paranodal axo-glial junctions and may participate in conduction deterioration.


Asunto(s)
Moléculas de Adhesión Celular/inmunología , Factores de Crecimiento Nervioso/inmunología , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/diagnóstico , Nódulos de Ranvier/patología , Animales , Autoanticuerpos/sangre , Humanos , Ratones , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/sangre , Polirradiculoneuropatía Crónica Inflamatoria Desmielinizante/patología , Nervio Sural/patología
19.
J Neurosci ; 36(37): 9633-46, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27629714

RESUMEN

UNLABELLED: Schwann cells (SCs), ensheathing glia of the peripheral nervous system, support axonal survival and function. Abnormalities in SC metabolism affect their ability to provide this support and maintain axon integrity. To further interrogate this metabolic influence on axon-glial interactions, we generated OGT-SCKO mice with SC-specific deletion of the metabolic/nutrient sensing protein O-GlcNAc transferase that mediates the O-linked addition of N-acetylglucosamine (GlcNAc) moieties to Ser and Thr residues. The OGT-SCKO mice develop tomaculous demyelinating neuropathy characterized by focal thickenings of the myelin sheath (tomacula), progressive demyelination, axonal loss, and motor and sensory nerve dysfunction. Proteomic analysis identified more than 100 O-GlcNAcylated proteins in rat sciatic nerve, including Periaxin (PRX), a myelin protein whose mutation causes inherited neuropathy in humans. PRX lacking O-GlcNAcylation is mislocalized within the myelin sheath of these mutant animals. Furthermore, phenotypes of OGT-SCKO and Prx-deficient mice are very similar, suggesting that metabolic control of PRX O-GlcNAcylation is crucial for myelin maintenance and axonal integrity. SIGNIFICANCE STATEMENT: The nutrient sensing protein O-GlcNAc transferase (OGT) mediates post-translational O-linked N-acetylglucosamine (GlcNAc) modification. Here we find that OGT functions in Schwann cells (SCs) to maintain normal myelin and prevent axonal loss. SC-specific deletion of OGT (OGT-SCKO mice) causes a tomaculous demyelinating neuropathy accompanied with progressive axon degeneration and motor and sensory nerve dysfunction. We also found Periaxin (PRX), a myelin protein whose mutation causes inherited neuropathy in humans, is O-GlcNAcylated. Importantly, phenotypes of OGT-SCKO and Prx mutant mice are very similar, implying that compromised PRX function contributes to the neuropathy of OGT-SCKO mice. This study will be useful in understanding how SC metabolism contributes to PNS function and in developing new strategies for treating peripheral neuropathy by targeting SC function.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/patología , Proteínas de la Membrana/metabolismo , Vaina de Mielina/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Nervio Ciático/metabolismo , Acetilglucosamina/metabolismo , Potenciales de Acción/genética , Animales , Enfermedades Autoinmunes del Sistema Nervioso/fisiopatología , Axones/patología , Axones/ultraestructura , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Glucosa/metabolismo , Glicosilación , Humanos , Ratones , Ratones Transgénicos , Proteína Básica de Mielina/metabolismo , Vaina de Mielina/fisiología , Vaina de Mielina/ultraestructura , N-Acetilglucosaminiltransferasas/genética , Proteínas del Tejido Nervioso/metabolismo , Conducción Nerviosa/genética , Proteómica , Nervio Ciático/patología , Nervio Ciático/ultraestructura , Tubulina (Proteína)/metabolismo
20.
Hum Mol Genet ; 25(13): 2853-2861, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27170316

RESUMEN

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by low levels of SMN protein, primarily affecting lower motor neurons. Recent evidence from SMA and related conditions suggests that glial cells can influence disease severity. Here, we investigated the role of glial cells in the peripheral nervous system by creating SMA mice selectively overexpressing SMN in myelinating Schwann cells (Smn-/-;SMN2tg/0;SMN1SC). Restoration of SMN protein levels restricted solely to Schwann cells reversed myelination defects, significantly improved neuromuscular function and ameliorated neuromuscular junction pathology in SMA mice. However, restoration of SMN in Schwann cells had no impact on motor neuron soma loss from the spinal cord or ongoing systemic and peripheral pathology. This study provides evidence for a defined, intrinsic contribution of glial cells to SMA disease pathogenesis and suggests that therapies designed to include Schwann cells in their target tissues are likely to be required in order to rescue myelination defects and associated disease symptoms.


Asunto(s)
Neuroglía/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/metabolismo , Vaina de Mielina/metabolismo , Degeneración Nerviosa/patología , Enfermedades Neuromusculares/patología , Unión Neuromuscular/metabolismo , Células de Schwann/metabolismo , Médula Espinal/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA