Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 84(10): 1842-1854.e7, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38759624

RESUMEN

Genomic context critically modulates regulatory function but is difficult to manipulate systematically. The murine insulin-like growth factor 2 (Igf2)/H19 locus is a paradigmatic model of enhancer selectivity, whereby CTCF occupancy at an imprinting control region directs downstream enhancers to activate either H19 or Igf2. We used synthetic regulatory genomics to repeatedly replace the native locus with 157-kb payloads, and we systematically dissected its architecture. Enhancer deletion and ectopic delivery revealed previously uncharacterized long-range regulatory dependencies at the native locus. Exchanging the H19 enhancer cluster with the Sox2 locus control region (LCR) showed that the H19 enhancers relied on their native surroundings while the Sox2 LCR functioned autonomously. Analysis of regulatory DNA actuation across cell types revealed that these enhancer clusters typify broader classes of context sensitivity genome wide. These results show that unexpected dependencies influence even well-studied loci, and our approach permits large-scale manipulation of complete loci to investigate the relationship between regulatory architecture and function.


Asunto(s)
Factor de Unión a CCCTC , Elementos de Facilitación Genéticos , Factor II del Crecimiento Similar a la Insulina , ARN Largo no Codificante , Factores de Transcripción SOXB1 , Animales , Ratones , Factor de Unión a CCCTC/metabolismo , Factor de Unión a CCCTC/genética , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Región de Control de Posición/genética , Impresión Genómica , Genómica/métodos
2.
Nature ; 628(8007): 373-380, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448583

RESUMEN

Pervasive transcriptional activity is observed across diverse species. The genomes of extant organisms have undergone billions of years of evolution, making it unclear whether these genomic activities represent effects of selection or 'noise'1-4. Characterizing default genome states could help understand whether pervasive transcriptional activity has biological meaning. Here we addressed this question by introducing a synthetic 101-kb locus into the genomes of Saccharomyces cerevisiae and Mus musculus and characterizing genomic activity. The locus was designed by reversing but not complementing human HPRT1, including its flanking regions, thus retaining basic features of the natural sequence but ablating evolved coding or regulatory information. We observed widespread activity of both reversed and native HPRT1 loci in yeast, despite the lack of evolved yeast promoters. By contrast, the reversed locus displayed no activity at all in mouse embryonic stem cells, and instead exhibited repressive chromatin signatures. The repressive signature was alleviated in a locus variant lacking CpG dinucleotides; nevertheless, this variant was also transcriptionally inactive. These results show that synthetic genomic sequences that lack coding information are active in yeast, but inactive in mouse embryonic stem cells, consistent with a major difference in 'default genomic states' between these two divergent eukaryotic cell types, with implications for understanding pervasive transcription, horizontal transfer of genetic information and the birth of new genes.


Asunto(s)
Genes Sintéticos , Genoma , Saccharomyces cerevisiae , Transcripción Genética , Animales , Humanos , Ratones , Cromatina/genética , Islas de CpG , Genes Sintéticos/genética , Genoma/genética , Células Madre Embrionarias de Ratones/metabolismo , Regiones Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Hipoxantina Fosforribosiltransferasa/genética , Evolución Molecular
3.
Nature ; 626(8001): 1042-1048, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38418917

RESUMEN

The loss of the tail is among the most notable anatomical changes to have occurred along the evolutionary lineage leading to humans and to the 'anthropomorphous apes'1-3, with a proposed role in contributing to human bipedalism4-6. Yet, the genetic mechanism that facilitated tail-loss evolution in hominoids remains unknown. Here we present evidence that an individual insertion of an Alu element in the genome of the hominoid ancestor may have contributed to tail-loss evolution. We demonstrate that this Alu element-inserted into an intron of the TBXT gene7-9-pairs with a neighbouring ancestral Alu element encoded in the reverse genomic orientation and leads to a hominoid-specific alternative splicing event. To study the effect of this splicing event, we generated multiple mouse models that express both full-length and exon-skipped isoforms of Tbxt, mimicking the expression pattern of its hominoid orthologue TBXT. Mice expressing both Tbxt isoforms exhibit a complete absence of the tail or a shortened tail depending on the relative abundance of Tbxt isoforms expressed at the embryonic tail bud. These results support the notion that the exon-skipped transcript is sufficient to induce a tail-loss phenotype. Moreover, mice expressing the exon-skipped Tbxt isoform develop neural tube defects, a condition that affects approximately 1 in 1,000 neonates in humans10. Thus, tail-loss evolution may have been associated with an adaptive cost of the potential for neural tube defects, which continue to affect human health today.


Asunto(s)
Empalme Alternativo , Evolución Molecular , Hominidae , Proteínas de Dominio T Box , Cola (estructura animal) , Animales , Humanos , Ratones , Empalme Alternativo/genética , Elementos Alu/genética , Modelos Animales de Enfermedad , Genoma/genética , Hominidae/anatomía & histología , Hominidae/genética , Intrones/genética , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo , Fenotipo , Isoformas de Proteínas/deficiencia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Cola (estructura animal)/anatomía & histología , Cola (estructura animal)/embriología , Exones/genética
4.
bioRxiv ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-37781588

RESUMEN

Enhancer function is frequently investigated piecemeal using truncated reporter assays or single deletion analysis. Thus it remains unclear to what extent enhancer function at native loci relies on surrounding genomic context. Using the Big-IN technology for targeted integration of large DNAs, we analyzed the regulatory architecture of the murine Igf2/H19 locus, a paradigmatic model of enhancer selectivity. We assembled payloads containing a 157-kb functional Igf2/H19 locus and engineered mutations to genetically direct CTCF occupancy at the imprinting control region (ICR) that switches the target gene of the H19 enhancer cluster. Contrasting activity of payloads delivered at the endogenous Igf2/H19 locus or ectopically at Hprt revealed that the Igf2/H19 locus includes additional, previously unknown long-range regulatory elements. Exchanging components of the Igf2/H19 locus with the well-studied Sox2 locus showed that the H19 enhancer cluster functioned poorly out of context, and required its native surroundings to activate Sox2 expression. Conversely, the Sox2 locus control region (LCR) could activate both Igf2 and H19 outside its native context, but its activity was only partially modulated by CTCF occupancy at the ICR. Analysis of regulatory DNA actuation across different cell types revealed that, while the H19 enhancers are tightly coordinated within their native locus, the Sox2 LCR acts more independently. We show that these enhancer clusters typify broader classes of loci genome-wide. Our results show that unexpected dependencies may influence even the most studied functional elements, and our synthetic regulatory genomics approach permits large-scale manipulation of complete loci to investigate the relationship between locus architecture and function.

6.
Nature ; 623(7986): 423-431, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914927

RESUMEN

Genetically engineered mouse models (GEMMs) help us to understand human pathologies and develop new therapies, yet faithfully recapitulating human diseases in mice is challenging. Advances in genomics have highlighted the importance of non-coding regulatory genome sequences, which control spatiotemporal gene expression patterns and splicing in many human diseases1,2. Including regulatory extensive genomic regions, which requires large-scale genome engineering, should enhance the quality of disease modelling. Existing methods set limits on the size and efficiency of DNA delivery, hampering the routine creation of highly informative models that we call genomically rewritten and tailored GEMMs (GREAT-GEMMs). Here we describe 'mammalian switching antibiotic resistance markers progressively for integration' (mSwAP-In), a method for efficient genome rewriting in mouse embryonic stem cells. We demonstrate the use of mSwAP-In for iterative genome rewriting of up to 115 kb of a tailored Trp53 locus, as well as for humanization of mice using 116 kb and 180 kb human ACE2 loci. The ACE2 model recapitulated human ACE2 expression patterns and splicing, and notably, presented milder symptoms when challenged with SARS-CoV-2 compared with the existing K18-hACE2 model, thus representing a more human-like model of infection. Finally, we demonstrated serial genome writing by humanizing mouse Tmprss2 biallelically in the ACE2 GREAT-GEMM, highlighting the versatility of mSwAP-In in genome writing.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Modelos Animales de Enfermedad , Ingeniería Genética , Genoma , Proteína p53 Supresora de Tumor , Animales , Humanos , Ratones , Alelos , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/genética , COVID-19/virología , ADN/genética , Farmacorresistencia Microbiana/genética , Ingeniería Genética/métodos , Genoma/genética , Células Madre Embrionarias de Ratones/metabolismo , SARS-CoV-2/metabolismo , Serina Endopeptidasas/genética , Proteína p53 Supresora de Tumor/genética
7.
Nat Neurosci ; 26(10): 1726-1738, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37697111

RESUMEN

Macroglia (astrocytes and oligodendrocytes) are required for normal development and function of the central nervous system, yet many questions remain about their emergence during the development of the brain and spinal cord. Here we used single-cell/single-nucleus RNA sequencing (scRNA-seq/snRNA-seq) to analyze over 298,000 cells and nuclei during macroglia differentiation from mouse embryonic and human-induced pluripotent stem cells. We computationally identify candidate genes involved in the fate specification of glia in both species and report heterogeneous expression of astrocyte surface markers across differentiating cells. We then used our transcriptomic data to optimize a previous mouse astrocyte differentiation protocol, decreasing the overall protocol length and complexity. Finally, we used multi-omic, dual single-nuclei (sn)RNA-seq/snATAC-seq analysis to uncover potential genomic regulatory sites mediating glial differentiation. These datasets will enable future optimization of glial differentiation protocols and provide insight into human glial differentiation.


Asunto(s)
Astrocitos , Análisis de Expresión Génica de una Sola Célula , Humanos , Ratones , Animales , Diferenciación Celular/genética , Neurogénesis , Neuroglía , Análisis de la Célula Individual/métodos , Análisis de Secuencia de ARN/métodos
8.
Nucleic Acids Res ; 51(13): e72, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37326023

RESUMEN

Use of synthetic genomics to design and build 'big' DNA has revolutionized our ability to answer fundamental biological questions by employing a bottom-up approach. Saccharomyces cerevisiae, or budding yeast, has become the major platform to assemble large synthetic constructs thanks to its powerful homologous recombination machinery and the availability of well-established molecular biology techniques. However, introducing designer variations to episomal assemblies with high efficiency and fidelity remains challenging. Here we describe CRISPR Engineering of EPisomes in Yeast, or CREEPY, a method for rapid engineering of large synthetic episomal DNA constructs. We demonstrate that CRISPR editing of circular episomes presents unique challenges compared to modifying native yeast chromosomes. We optimize CREEPY for efficient and precise multiplex editing of >100 kb yeast episomes, providing an expanded toolkit for synthetic genomics.


Asunto(s)
Edición Génica , Levaduras , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Sistemas CRISPR-Cas/genética , ADN , Edición Génica/métodos , Plásmidos/genética , Levaduras/genética
9.
Cell Rep ; 42(5): 112505, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37182209

RESUMEN

Genes that are key to cell identity are generally regulated by cell-type-specific enhancer elements bound by transcription factors, some of which facilitate looping to distant gene promoters. In contrast, genes that encode housekeeping functions, whose regulation is essential for normal cell metabolism and growth, generally lack interactions with distal enhancers. We find that Ronin (Thap11) assembles multiple promoters of housekeeping and metabolic genes to regulate gene expression. This behavior is analogous to how enhancers are brought together with promoters to regulate cell identity genes. Thus, Ronin-dependent promoter assemblies provide a mechanism to explain why housekeeping genes can forgo distal enhancer elements and why Ronin is important for cellular metabolism and growth control. We propose that clustering of regulatory elements is a mechanism common to cell identity and housekeeping genes but is accomplished by different factors binding distinct control elements to establish enhancer-promoter or promoter-promoter interactions, respectively.


Asunto(s)
Elementos de Facilitación Genéticos , Genes Esenciales , Genes Esenciales/genética , Elementos de Facilitación Genéticos/genética , Factores de Transcripción/metabolismo , Regiones Promotoras Genéticas/genética
10.
Mol Cell ; 83(7): 1140-1152.e7, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36931273

RESUMEN

Sox2 expression in mouse embryonic stem cells (mESCs) depends on a distal cluster of DNase I hypersensitive sites (DHSs), but their individual contributions and degree of interdependence remain a mystery. We analyzed the endogenous Sox2 locus using Big-IN to scarlessly integrate large DNA payloads incorporating deletions, rearrangements, and inversions affecting single or multiple DHSs, as well as surgical alterations to transcription factor (TF) recognition sequences. Multiple mESC clones were derived for each payload, sequence-verified, and analyzed for Sox2 expression. We found that two DHSs comprising a handful of key TF recognition sequences were each sufficient for long-range activation of Sox2 expression. By contrast, three nearby DHSs were entirely context dependent, showing no activity alone but dramatically augmenting the activity of the autonomous DHSs. Our results highlight the role of context in modulating genomic regulatory element function, and our synthetic regulatory genomics approach provides a roadmap for the dissection of other genomic loci.


Asunto(s)
Regulación de la Expresión Génica , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Ratones , Elementos de Facilitación Genéticos , Genómica , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción SOXB1/metabolismo
11.
iScience ; 25(6): 104438, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35692632

RESUMEN

Overwriting counterselectable markers is an efficient strategy for removing wild-type DNA or replacing it with payload DNA of interest. Currently, one bottleneck of efficient genome engineering in mammals is the shortage of counterselectable (negative selection) markers that work robustly without affecting organismal developmental potential. Here, we report a conditional Piga knockout strategy that enables efficient proaerolysin-based counterselection in mouse embryonic stem cells. The conditional Piga knockout cells show similar proaerolysin resistance as full (non-conditional) Piga deletion cells, which enables the use of a PIGA transgene as a counterselectable marker for genome engineering purposes. Native Piga function is readily restored in conditional Piga knockout cells to facilitate subsequent mouse development. We also demonstrate the generality of our strategy by engineering a conditional knockout of endogenous Hprt. Taken together, our work provides a new tool for advanced mouse genome writing and mouse model establishment.

12.
Science ; 377(6601): eabk2820, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35771912

RESUMEN

Precise Hox gene expression is crucial for embryonic patterning. Intra-Hox transcription factor binding and distal enhancer elements have emerged as the major regulatory modules controlling Hox gene expression. However, quantifying their relative contributions has remained elusive. Here, we introduce "synthetic regulatory reconstitution," a conceptual framework for studying gene regulation, and apply it to the HoxA cluster. We synthesized and delivered variant rat HoxA clusters (130 to 170 kilobases) to an ectopic location in the mouse genome. We found that a minimal HoxA cluster recapitulated correct patterns of chromatin remodeling and transcription in response to patterning signals, whereas the addition of distal enhancers was needed for full transcriptional output. Synthetic regulatory reconstitution could provide a generalizable strategy for deciphering the regulatory logic of gene expression in complex genomes.


Asunto(s)
Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Proteínas de Homeodominio , Animales , Tipificación del Cuerpo/genética , Elementos de Facilitación Genéticos , Genoma , Proteínas de Homeodominio/genética , Ratones , Ratas , Transcripción Genética
13.
Genome Res ; 32(3): 425-436, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35082140

RESUMEN

The specificity of interactions between genomic regulatory elements and potential target genes is influenced by the binding of insulator proteins such as CTCF, which can act as potent enhancer blockers when interposed between an enhancer and a promoter in a reporter assay. But not all CTCF sites genome-wide function as insulator elements, depending on cellular and genomic context. To dissect the influence of genomic context on enhancer blocker activity, we integrated reporter constructs with promoter-only, promoter and enhancer, and enhancer blocker configurations at hundreds of thousands of genomic sites using the Sleeping Beauty transposase. Deconvolution of reporter activity by genomic position reveals distinct expression patterns subject to genomic context, including a compartment of enhancer blocker reporter integrations with robust expression. The high density of integration sites permits quantitative delineation of characteristic genomic context sensitivity profiles and their decomposition into sensitivity to both local and distant DNase I hypersensitive sites. Furthermore, using a single-cell expression approach to test the effect of integrated reporters for differential expression of nearby endogenous genes reveals that CTCF insulator elements do not completely abrogate reporter effects on endogenous gene expression. Collectively, our results lend new insight into genomic regulatory compartmentalization and its influence on the determinants of promoter-enhancer specificity.


Asunto(s)
Elementos de Facilitación Genéticos , Elementos Aisladores , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Genómica , Regiones Promotoras Genéticas
14.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33649239

RESUMEN

Routine rewriting of loci associated with human traits and diseases would facilitate their functional analysis. However, existing DNA integration approaches are limited in terms of scalability and portability across genomic loci and cellular contexts. We describe Big-IN, a versatile platform for targeted integration of large DNAs into mammalian cells. CRISPR/Cas9-mediated targeting of a landing pad enables subsequent recombinase-mediated delivery of variant payloads and efficient positive/negative selection for correct clones in mammalian stem cells. We demonstrate integration of constructs up to 143 kb, and an approach for one-step scarless delivery. We developed a staged pipeline combining PCR genotyping and targeted capture sequencing for economical and comprehensive verification of engineered stem cells. Our approach should enable combinatorial interrogation of genomic functional elements and systematic locus-scale analysis of genome function.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sitios Genéticos , Genoma Humano , Células Madre Embrionarias Humanas , Células Madre Embrionarias de Ratones , Animales , Línea Celular , Humanos , Ratones
15.
Genetics ; 218(1)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33742653

RESUMEN

Design and large-scale synthesis of DNA has been applied to the functional study of viral and microbial genomes. New and expanded technology development is required to unlock the transformative potential of such bottom-up approaches to the study of larger mammalian genomes. Two major challenges include assembling and delivering long DNA sequences. Here, we describe a workflow for de novo DNA assembly and delivery that enables functional evaluation of mammalian genes on the length scale of 100 kilobase pairs (kb). The DNA assembly step is supported by an integrated robotic workcell. We demonstrate assembly of the 101 kb human HPRT1 gene in yeast from 3 kb building blocks, precision delivery of the resulting construct to mouse embryonic stem cells, and subsequent expression of the human protein from its full-length human gene in mouse cells. This workflow provides a framework for mammalian genome writing. We envision utility in producing designer variants of human genes linked to disease and their delivery and functional analysis in cell culture or animal models.


Asunto(s)
Clonación Molecular/métodos , Ingeniería Genética/métodos , Animales , ADN/genética , Técnicas de Transferencia de Gen/veterinaria , Técnicas Genéticas/veterinaria , Genoma/genética , Genómica/métodos , Humanos , Hipoxantina Fosforribosiltransferasa/genética , Ratones , Análisis de Secuencia de ADN/métodos , Flujo de Trabajo
16.
Stem Cell Reports ; 14(4): 561-574, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32243840

RESUMEN

Hematopoietic stem cells (HSCs) exist in a dormant state and progressively lose regenerative potency as they undergo successive divisions. Why this functional decline occurs and how this information is encoded is unclear. To better understand how this information is stored, we performed RNA sequencing on HSC populations differing only in their divisional history. Comparative analysis revealed that genes upregulated with divisions are enriched for lineage genes and regulated by cell-cycle-associated transcription factors, suggesting that proliferation itself drives lineage priming. Downregulated genes are, however, associated with an HSC signature and targeted by the Polycomb Repressive Complex 2 (PRC2). The PRC2 catalytic subunits Ezh1 and Ezh2 promote and suppress the HSC state, respectively, and successive divisions cause a switch from Ezh1 to Ezh2 dominance. We propose that cell divisions drive lineage priming and Ezh2 accumulation, which represses HSC signature genes to consolidate information on divisional history into memory.


Asunto(s)
División Celular , Linaje de la Célula , Hematopoyesis , Células Madre Hematopoyéticas/citología , Animales , División Celular/genética , Linaje de la Célula/genética , Autorrenovación de las Células , Cromatina/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Femenino , Regulación de la Expresión Génica , Hematopoyesis/genética , Homeostasis , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo
17.
Nat Commun ; 11(1): 1282, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32152282

RESUMEN

PRDM14 is a crucial regulator of mouse primordial germ cells (mPGCs), epigenetic reprogramming and pluripotency, but its role in the evolutionarily divergent regulatory network of human PGCs (hPGCs) remains unclear. Besides, a previous knockdown study indicated that PRDM14 might be dispensable for human germ cell fate. Here, we decided to use inducible degrons for a more rapid and comprehensive PRDM14 depletion. We show that PRDM14 loss results in significantly reduced specification efficiency and an aberrant transcriptome of hPGC-like cells (hPGCLCs) obtained in vitro from human embryonic stem cells (hESCs). Chromatin immunoprecipitation and transcriptomic analyses suggest that PRDM14 cooperates with TFAP2C and BLIMP1 to upregulate germ cell and pluripotency genes, while repressing WNT signalling and somatic markers. Notably, PRDM14 targets are not conserved between mouse and human, emphasising the divergent molecular mechanisms of PGC specification. The effectiveness of degrons for acute protein depletion is widely applicable in various developmental contexts.


Asunto(s)
Linaje de la Célula , Proteínas de Unión al ADN/metabolismo , Células Germinativas/citología , Células Germinativas/metabolismo , Proteolisis , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Animales , Sistemas CRISPR-Cas/genética , Diferenciación Celular , Proteínas de Unión al ADN/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ácidos Indolacéticos/farmacología , Ratones , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética , Transcriptoma/genética
18.
Nat Commun ; 7: 11742, 2016 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-27230261

RESUMEN

Loss-of-function studies are fundamental for dissecting gene function. Yet, methods to rapidly and effectively perturb genes in mammalian cells, and particularly in stem cells, are scarce. Here we present a system for simultaneous conditional regulation of two different proteins in the same mammalian cell. This system harnesses the plant auxin and jasmonate hormone-induced degradation pathways, and is deliverable with only two lentiviral vectors. It combines RNAi-mediated silencing of two endogenous proteins with the expression of two exogenous proteins whose degradation is induced by external ligands in a rapid, reversible, titratable and independent manner. By engineering molecular tuners for NANOG, CHK1, p53 and NOTCH1 in mammalian stem cells, we have validated the applicability of the system and demonstrated its potential to unravel complex biological processes.


Asunto(s)
Células Madre Embrionarias/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/genética , Interferencia de ARN , Animales , Línea Celular , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Células Madre Embrionarias/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Vectores Genéticos/genética , Células HCT116 , Células HEK293 , Humanos , Lentivirus/genética , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Receptor Notch1/genética , Receptor Notch1/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
19.
Stem Cell Reports ; 5(1): 97-110, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26095607

RESUMEN

Tbx3, a member of the T-box family, plays important roles in development, stem cells, nuclear reprogramming, and cancer. Loss of Tbx3 induces differentiation in mouse embryonic stem cells (mESCs). However, we show that mESCs exist in an alternate stable pluripotent state in the absence of Tbx3. In-depth transcriptome analysis of this mESC state reveals Dppa3 as a direct downstream target of Tbx3. Also, Tbx3 facilitates the cell fate transition from pluripotent cells to mesoderm progenitors by directly repressing Wnt pathway members required for differentiation. Wnt signaling regulates differentiation of mESCs into mesoderm progenitors and helps to maintain a naive pluripotent state. We show that Tbx3, a downstream target of Wnt signaling, fine tunes these divergent roles of Wnt signaling in mESCs. In conclusion, we identify a signaling-TF axis that controls the exit of mESCs from a self-renewing pluripotent state toward mesoderm differentiation.


Asunto(s)
Diferenciación Celular/genética , Células Madre Embrionarias de Ratones/citología , Proteínas Represoras/genética , Proteínas de Dominio T Box/genética , Animales , Linaje de la Célula/genética , Proteínas Cromosómicas no Histona , Regulación del Desarrollo de la Expresión Génica , Mesodermo/citología , Mesodermo/crecimiento & desarrollo , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Proteínas Represoras/biosíntesis , Proteínas de Dominio T Box/biosíntesis , Vía de Señalización Wnt/genética
20.
Nat Genet ; 44(11): 1207-14, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23064413

RESUMEN

DNA methylation has been comprehensively profiled in normal and cancer cells, but the dynamics that form, maintain and reprogram differentially methylated regions remain enigmatic. Here, we show that methylation patterns within populations of cells from individual somatic tissues are heterogeneous and polymorphic. Using in vitro evolution of immortalized fibroblasts for over 300 generations, we track the dynamics of polymorphic methylation at regions developing significant differential methylation on average. The data indicate that changes in population-averaged methylation occur through a stochastic process that generates a stream of local and uncorrelated methylation aberrations. Despite the stochastic nature of the process, nearly deterministic epigenetic remodeling emerges on average at loci that lose or gain resistance to methylation accumulation. Changes in the susceptibility to methylation accumulation are correlated with changes in histone modification and CTCF occupancy. Characterizing epigenomic polymorphism within cell populations is therefore critical to understanding methylation dynamics in normal and cancer cells.


Asunto(s)
Metilación de ADN/genética , Epigénesis Genética , Proteínas Represoras/genética , Secuencia de Bases , Factor de Unión a CCCTC , Islas de CpG , Fibroblastos , Regulación Neoplásica de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Polimorfismo Genético , Proteínas Represoras/metabolismo , Análisis de Secuencia de ADN , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...