Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
3.
JCI Insight ; 5(8)2020 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-32324168

RESUMEN

The IL1RL1 (ST2) gene locus is robustly associated with asthma; however, the contribution of single nucleotide polymorphisms (SNPs) in this locus to specific asthma subtypes and the functional mechanisms underlying these associations remain to be defined. We tested for association between IL1RL1 region SNPs and characteristics of asthma as defined by clinical and immunological measures and addressed functional effects of these genetic variants in lung tissue and airway epithelium. Utilizing 4 independent cohorts (Lifelines, Dutch Asthma GWAS [DAG], Genetics of Asthma Severity and Phenotypes [GASP], and Manchester Asthma and Allergy Study [MAAS]) and resequencing data, we identified 3 key signals associated with asthma features. Investigations in lung tissue and primary bronchial epithelial cells identified context-dependent relationships between the signals and IL1RL1 mRNA and soluble protein expression. This was also observed for asthma-associated IL1RL1 nonsynonymous coding TIR domain SNPs. Bronchial epithelial cell cultures from asthma patients, exposed to exacerbation-relevant stimulations, revealed modulatory effects for all 4 signals on IL1RL1 mRNA and/or protein expression, suggesting SNP-environment interactions. The IL1RL1 TIR signaling domain haplotype affected IL-33-driven NF-κB signaling, while not interfering with TLR signaling. In summary, we identify that IL1RL1 genetic signals potentially contribute to severe and eosinophilic phenotypes in asthma, as well as provide initial mechanistic insight, including genetic regulation of IL1RL1 isoform expression and receptor signaling.


Asunto(s)
Asma/genética , Predisposición Genética a la Enfermedad/genética , Proteína 1 Similar al Receptor de Interleucina-1/genética , Asma/inmunología , Genotipo , Humanos , Pulmón/inmunología , Fenotipo , Polimorfismo de Nucleótido Simple , Mucosa Respiratoria/inmunología
4.
J Allergy Clin Immunol ; 145(6): 1655-1663, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31953105

RESUMEN

BACKGROUND: Epigenetic signatures in the nasal epithelium, which is a primary interface with the environment and an accessible proxy for the bronchial epithelium, might provide insights into mechanisms of allergic disease. OBJECTIVE: We aimed to identify and interpret methylation signatures in nasal epithelial brushes associated with rhinitis and asthma. METHODS: Nasal epithelial brushes were obtained from 455 children at the 16-year follow-up of the Dutch Prevention and Incidence of Asthma and Mite Allergy birth cohort study. Epigenome-wide association studies were performed on children with asthma, rhinitis, and asthma and/or rhinitis (AsRh) by using logistic regression, and the top results were replicated in 2 independent cohorts of African American and Puerto Rican children. Significant CpG sites were related to environmental exposures (pets, active and passive smoking, and molds) during secondary school and were correlated with gene expression by RNA-sequencing (n = 244). RESULTS: The epigenome-wide association studies identified CpG sites significantly associated with rhinitis (n = 81) and AsRh (n = 75), but not with asthma. We significantly replicated 62 of 81 CpG sites with rhinitis and 60 of 75 with AsRh, as well as 1 CpG site with asthma. Methylation of cg03565274 was negatively associated with AsRh and positively associated with exposure to pets during secondary school. DNA methylation signals associated with AsRh were mainly driven by specific IgE-positive subjects. DNA methylation related to gene transcripts that were enriched for immune pathways and expressed in immune and epithelial cells. Nasal CpG sites performed well in predicting AsRh. CONCLUSIONS: We identified replicable DNA methylation profiles of asthma and rhinitis in nasal brushes. Exposure to pets may affect nasal epithelial methylation in relation to asthma and rhinitis.


Asunto(s)
Asma/genética , Metilación de ADN/genética , Mucosa Nasal/inmunología , Rinitis/genética , Adolescente , Negro o Afroamericano/genética , Asma/inmunología , Niño , Estudios de Cohortes , Islas de CpG/genética , Islas de CpG/inmunología , Metilación de ADN/inmunología , Epigénesis Genética/genética , Epigénesis Genética/inmunología , Epigenoma/genética , Epigenoma/inmunología , Epigenómica/métodos , Células Epiteliales/inmunología , Femenino , Estudio de Asociación del Genoma Completo/métodos , Humanos , Inmunoglobulina E/genética , Masculino , Mucosa Respiratoria/inmunología , Rinitis/inmunología
6.
Nat Med ; 25(7): 1153-1163, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31209336

RESUMEN

Human lungs enable efficient gas exchange and form an interface with the environment, which depends on mucosal immunity for protection against infectious agents. Tightly controlled interactions between structural and immune cells are required to maintain lung homeostasis. Here, we use single-cell transcriptomics to chart the cellular landscape of upper and lower airways and lung parenchyma in healthy lungs, and lower airways in asthmatic lungs. We report location-dependent airway epithelial cell states and a novel subset of tissue-resident memory T cells. In the lower airways of patients with asthma, mucous cell hyperplasia is shown to stem from a novel mucous ciliated cell state, as well as goblet cell hyperplasia. We report the presence of pathogenic effector type 2 helper T cells (TH2) in asthmatic lungs and find evidence for type 2 cytokines in maintaining the altered epithelial cell states. Unbiased analysis of cell-cell interactions identifies a shift from airway structural cell communication in healthy lungs to a TH2-dominated interactome in asthmatic lungs.


Asunto(s)
Asma/patología , Pulmón/citología , Adulto , Anciano , Linfocitos T CD4-Positivos/fisiología , Comunicación Celular , Células Epiteliales/inmunología , Células Epiteliales/fisiología , Femenino , Estudio de Asociación del Genoma Completo , Células Caliciformes/metabolismo , Humanos , Pulmón/inmunología , Pulmón/patología , Masculino , Metaplasia , Persona de Mediana Edad , Células Th2/fisiología , Transcriptoma
7.
Lancet Respir Med ; 7(4): 336-346, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30584054

RESUMEN

BACKGROUND: Epigenetic mechanisms could alter the airway epithelial barrier and ultimately lead to atopic diseases such as asthma. We aimed to identify DNA methylation profiles that are associated with-and could accurately classify-atopy and atopic asthma in school-aged children. METHODS: We did a genome-wide study of DNA methylation in nasal epithelium and atopy or atopic asthma in 483 Puerto Rican children aged 9-20 years, recruited using multistage probability sampling. Atopy was defined as at least one positive IgE (≥0·35 IU/mL) to common aeroallergens, and asthma was defined as a physician's diagnosis plus wheeze in the previous year. Significant (false discovery rate p<0·01) methylation signals were correlated with gene expression, and top CpGs were validated by pyrosequencing. We then replicated our top methylation findings in a cohort of 72 predominantly African American children, and in 432 children from a European birth cohort. Next, we tested classification models based on nasal methylation for atopy or atopic asthma in all cohorts. FINDINGS: DNA methylation profiles were markedly different between children with (n=312) and without (n=171) atopy in the Puerto Rico discovery cohort, recruited from Feb 12, 2014, until May 8, 2017. After adjustment for covariates and multiple testing, we found 8664 differentially methylated CpGs by atopy, with false discovery rate-adjusted p values ranging from 9·58 × 10-17 to 2·18 × 10-22 for the top 30 CpGs. These CpGs were in or near genes relevant to epithelial barrier function, including CDHR3 and CDH26, and in other genes related to airway epithelial integrity and immune regulation, such as FBXL7, NTRK1, and SLC9A3. Moreover, 28 of the top 30 CpGs replicated in the same direction in both independent cohorts. Classification models of atopy based on nasal methylation performed well in the Puerto Rico cohort (area under the curve [AUC] 0·93-0·94 and accuracy 85-88%) and in both replication cohorts (AUC 0·74-0·92, accuracy 68-82%). The models also performed well for atopic asthma in the Puerto Rico cohort (AUC 0·95-1·00, accuracy 88%) and the replication cohorts (AUC 0·82-0·88, accuracy 86%). INTERPRETATION: We identified specific methylation profiles in airway epithelium that are associated with atopy and atopic asthma in children, and a nasal methylation panel that could classify children by atopy or atopic asthma. Our findings support the feasibility of using the nasal methylome for future clinical applications, such as predicting the development of asthma among wheezing infants. FUNDING: US National Institutes of Health.


Asunto(s)
Asma/genética , Metilación de ADN , Hipersensibilidad/genética , Mucosa Nasal/metabolismo , Adolescente , Negro o Afroamericano/genética , Asma/etiología , Niño , Epigenoma/genética , Femenino , Estudio de Asociación del Genoma Completo , Hispánicos o Latinos/genética , Humanos , Hipersensibilidad/complicaciones , Inmunoglobulina E/sangre , Inmunoglobulina E/inmunología , Masculino , Transcriptoma/genética , Población Blanca/genética
8.
Thorax ; 70(1): 21-32, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24990664

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a progressive, incurable lung disease characterised by abnormal tissue repair causing emphysema and small airways fibrosis. Since current therapy cannot modify this abnormal repair, it is crucial to unravel its underlying molecular mechanisms. Unbiased analysis of genome-wide gene expression profiles in lung tissue provides a powerful tool to investigate this. METHODS: We performed genome-wide gene expression profiling in 581 lung tissue samples from current and ex-smokers with (n=311) and without COPD (n=270). Subsequently, quantitative PCR, western blot and immunohistochemical analyses were performed to validate our main findings. RESULTS: 112 genes were found to be upregulated in patients with COPD compared with controls, whereas 61 genes were downregulated. Among the most upregulated genes were fibulin-5 (FBLN5), elastin (ELN), latent transforming growth factor ß binding protein 2 (LTBP2) and microfibrillar associated protein 4 (MFAP4), all implicated in elastogenesis. Our gene expression findings were validated at mRNA and protein level. We demonstrated higher ELN gene expression in COPD lung tissue and similar trends for FBLN5 and MFAP4, and negative correlations with lung function. FBLN5 protein levels were increased in COPD lung tissue and cleaved, possibly non-functional FBLN5 protein was present. Strong coexpression of FBLN5, ELN, LTBP2 and MFAP4 in lung tissue and in silico analysis indicated cofunctionality of these genes. Finally, colocalisation of FBLN5, MFAP4 and LTBP2 with elastic fibres was demonstrated in lung tissue. CONCLUSIONS: We identified a clear gene signature for elastogenesis in COPD and propose FBLN5 as a novel player in tissue repair in COPD.


Asunto(s)
Proteínas de la Matriz Extracelular/genética , Regulación de la Expresión Génica , Pulmón/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/genética , ARN Mensajero/genética , Anciano , Western Blotting , Elasticidad , Proteínas de la Matriz Extracelular/biosíntesis , Femenino , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Inmunohistoquímica , Pulmón/fisiopatología , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...