Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40
1.
2.
JCI Insight ; 9(7)2024 Apr 08.
Article En | MEDLINE | ID: mdl-38386413

In autoimmunity, FOXP3+ Tregs skew toward a proinflammatory, nonsuppressive phenotype and are, therefore, unable to control the exaggerated autoimmune response. This largely affects the success of autologous Treg therapy, which is currently under investigation for autoimmune diseases, including multiple sclerosis (MS). There is a need to ensure in vivo Treg stability before successful application of Treg therapy. Using genetic fate-mapping mice, we demonstrate that inflammatory, cytokine-expressing exFOXP3 T cells accumulate in the CNS during experimental autoimmune encephalomyelitis. In a human in vitro model, we discovered that interaction with inflamed blood-brain barrier endothelial cells (BBB-ECs) induces loss of function by Tregs. Transcriptome and cytokine analysis revealed that in vitro migrated Tregs have disrupted regenerative potential and a proinflammatory Th1/17 signature, and they upregulate the mTORC1 signaling pathway. In vitro treatment of migrated human Tregs with the clinically approved mTORC1 inhibitor rapamycin restored suppression. Finally, flow cytometric analysis indicated an enrichment of inflammatory, less-suppressive CD49d+ Tregs in the cerebrospinal fluid of people with MS. In summary, interaction with BBB-ECs is sufficient to affect Treg function, and transmigration triggers an additive proinflammatory phenotype switch. These insights help improve the efficacy of autologous Treg therapy of MS.


Autoimmune Diseases , Multiple Sclerosis , Humans , Mice , Animals , Sirolimus/pharmacology , Blood-Brain Barrier/metabolism , T-Lymphocytes, Regulatory , Endothelial Cells/metabolism , Cytokines/metabolism , Multiple Sclerosis/drug therapy , Mechanistic Target of Rapamycin Complex 1/metabolism
3.
Eur J Immunol ; 54(2): e2350544, 2024 Feb.
Article En | MEDLINE | ID: mdl-38009648

Multiple sclerosis (MS) is a common and devastating chronic inflammatory disease of the CNS. CD4+ T cells are assumed to be the first to cross the blood-central nervous system (CNS) barrier and trigger local inflammation. Here, we explored how pathogenicity-associated effector programs define CD4+ T cell subsets with brain-homing ability in MS. Runx3- and Eomes-, but not T-bet-expressing CD4+ memory cells were diminished in the blood of MS patients. This decline reversed following natalizumab treatment and was supported by a Runx3+ Eomes+ T-bet- enrichment in cerebrospinal fluid samples of treatment-naïve MS patients. This transcription factor profile was associated with high granzyme K (GZMK) and CCR5 levels and was most prominent in Th17.1 cells (CCR6+ CXCR3+ CCR4-/dim ). Previously published CD28- CD4 T cells were characterized by a Runx3+ Eomes- T-bet+ phenotype that coincided with intermediate CCR5 and a higher granzyme B (GZMB) and perforin expression, indicating the presence of two separate subsets. Under steady-state conditions, granzyme Khigh Th17.1 cells spontaneously passed the blood-brain barrier in vitro. This was only found for other subsets including CD28- cells when using inflamed barriers. Altogether, CD4+ T cells contain small fractions with separate pathogenic features, of which Th17.1 seems to breach the blood-brain barrier as a possible early event in MS.


CD28 Antigens , Multiple Sclerosis , Humans , Brain/pathology , CD28 Antigens/metabolism , CD4-Positive T-Lymphocytes/metabolism , Core Binding Factor Alpha 3 Subunit/metabolism , Granzymes/metabolism , Multiple Sclerosis/genetics
4.
Fluids Barriers CNS ; 20(1): 95, 2023 Dec 19.
Article En | MEDLINE | ID: mdl-38114994

Autoreactive T lymphocytes crossing the blood-brain barrier (BBB) into the central nervous system (CNS) play a crucial role in the initiation of demyelination and neurodegeneration in multiple sclerosis (MS). Recently, extracellular vesicles (EV) secreted by BBB endothelial cells (BBB-EC) have emerged as a unique form of cell-to-cell communication that contributes to cerebrovascular dysfunction. However, the precise impact of different size-based subpopulations of BBB-EC-derived EV (BBB-EV) on the early stages of MS remains unclear. Therefore, our objective was to investigate the content and function of distinct BBB-EV subpopulations in regulating BBB integrity and their role in T cell transendothelial migration, both in vitro and in vivo. Our study reveals that BBB-ECs release two distinct size based EV populations, namely small EV (sEV; 30-150 nm) and large EV (lEV; 150-300 nm), with a significantly higher secretion of sEV during inflammation. Notably, the expression patterns of cytokines and adhesion markers differ significantly between these BBB-EV subsets, indicating specific functional differences in the regulation of T cell migration. Through in vitro experiments, we demonstrate that lEV, which predominantly reflect their cellular source, play a major role in BBB integrity loss and the enhanced migration of pro-inflammatory Th1 and Th17.1 cells. Conversely, sEV appear to protect BBB function by inducing an anti-inflammatory phenotype in BBB-EC. These findings align with our in vivo data, where the administration of sEV to mice with experimental autoimmune encephalomyelitis (EAE) results in lower disease severity compared to the administration of lEV, which exacerbates disease symptoms. In conclusion, our study highlights the distinct and opposing effects of BBB-EV subpopulations on the BBB, both in vitro and in vivo. These findings underscore the need for further investigation into the diagnostic and therapeutic potential of BBB-EV in the context of MS.


Encephalomyelitis, Autoimmune, Experimental , Extracellular Vesicles , Multiple Sclerosis , Mice , Animals , Endothelial Cells/metabolism , Central Nervous System/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Blood-Brain Barrier/metabolism , Extracellular Vesicles/metabolism
5.
Proc Natl Acad Sci U S A ; 120(26): e2221007120, 2023 06 27.
Article En | MEDLINE | ID: mdl-37339207

The objective of this study is to examine IL-11-induced mechanisms of inflammatory cell migration to the central nervous system (CNS). We report that IL-11 is produced at highest frequency by myeloid cells among the peripheral blood mononuclear cell (PBMC) subsets. Patients with relapsing-remitting multiple sclerosis (RRMS) have an increased frequency of IL-11+ monocytes, IL-11+ and IL-11R+ CD4+ lymphocytes, and IL-11R+ neutrophils in comparison to matched healthy controls. IL-11+ and granulocyte-macrophage colony-stimulating factor (GM-CSF)+ monocytes, CD4+ lymphocytes, and neutrophils accumulate in the cerebrospinal fluid (CSF). The effect of IL-11 in-vitro stimulation, examined using single-cell RNA sequencing, revealed the highest number of differentially expressed genes in classical monocytes, including up-regulated NFKB1, NLRP3, and IL1B. All CD4+ cell subsets had increased expression of S100A8/9 alarmin genes involved in NLRP3 inflammasome activation. In IL-11R+-sorted cells from the CSF, classical and intermediate monocytes significantly up-regulated the expression of multiple NLRP3 inflammasome-related genes, including complement, IL18, and migratory genes (VEGFA/B) in comparison to blood-derived cells. Therapeutic targeting of this pathway with αIL-11 mAb in mice with RR experimental autoimmune encephalomyelitis (EAE) decreased clinical scores, CNS inflammatory infiltrates, and demyelination. αIL-11 mAb treatment decreased the numbers of NFκBp65+, NLRP3+, and IL-1ß+ monocytes in the CNS of mice with EAE. The results suggest that IL-11/IL-11R signaling in monocytes represents a therapeutic target in RRMS.


Encephalomyelitis, Autoimmune, Experimental , Inflammasomes , Animals , Mice , Inflammasomes/metabolism , Monocytes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Leukocytes, Mononuclear/metabolism , Interleukin-11/genetics , Interleukin-11/metabolism , Central Nervous System/metabolism , Cell Movement
6.
J Neuroinflammation ; 20(1): 106, 2023 May 03.
Article En | MEDLINE | ID: mdl-37138340

TNF signaling is an essential regulator of cellular homeostasis. Through its two receptors TNFR1 and TNFR2, soluble versus membrane-bound TNF enable cell death or survival in a variety of cell types. TNF-TNFRs signaling orchestrates important biological functions such as inflammation, neuronal activity as well as tissue de- and regeneration. TNF-TNFRs signaling is a therapeutic target for neurodegenerative diseases such as multiple sclerosis (MS) and Alzheimer's disease (AD), but animal and clinical studies yielded conflicting findings. Here, we ask whether a sequential modulation of TNFR1 and TNFR2 signaling is beneficial in experimental autoimmune encephalomyelitis (EAE), an experimental mouse model that recapitulates inflammatory and demyelinating aspects of MS. To this end, human TNFR1 antagonist and TNFR2 agonist were administered peripherally at different stages of disease development in TNFR-humanized mice. We found that stimulating TNFR2 before onset of symptoms leads to improved response to anti-TNFR1 therapeutic treatment. This sequential treatment was more effective in decreasing paralysis symptoms and demyelination, when compared to single treatments. Interestingly, the frequency of the different immune cell subsets is unaffected by TNFR modulation. Nevertheless, treatment with only a TNFR1 antagonist increases T-cell infiltration in the central nervous system (CNS) and B-cell cuffing at the perivascular sites, whereas a TNFR2 agonist promotes Treg CNS accumulation. Our findings highlight the complicated nature of TNF signaling which requires a timely balance of selective activation and inhibition of TNFRs in order to exert therapeutic effects in the context of CNS autoimmunity.


Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Receptors, Tumor Necrosis Factor, Type II , Receptors, Tumor Necrosis Factor, Type I , Animals , Humans , Mice , Central Nervous System/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Inflammation , Multiple Sclerosis/metabolism , Receptors, Tumor Necrosis Factor, Type I/agonists , Receptors, Tumor Necrosis Factor, Type II/agonists , Tumor Necrosis Factor-alpha/metabolism
7.
Cell Mol Immunol ; 20(6): 666-679, 2023 06.
Article En | MEDLINE | ID: mdl-37041314

The imbalance between pathogenic and protective T cell subsets is a cardinal feature of autoimmune disorders such as multiple sclerosis (MS). Emerging evidence indicates that endogenous and dietary-induced changes in fatty acid metabolism have a major impact on both T cell fate and autoimmunity. To date, however, the molecular mechanisms that underlie the impact of fatty acid metabolism on T cell physiology and autoimmunity remain poorly understood. Here, we report that stearoyl-CoA desaturase-1 (SCD1), an enzyme essential for the desaturation of fatty acids and highly regulated by dietary factors, acts as an endogenous brake on regulatory T-cell (Treg) differentiation and augments autoimmunity in an animal model of MS in a T cell-dependent manner. Guided by RNA sequencing and lipidomics analysis, we found that the absence of Scd1 in T cells promotes the hydrolysis of triglycerides and phosphatidylcholine through adipose triglyceride lipase (ATGL). ATGL-dependent release of docosahexaenoic acid enhanced Treg differentiation by activating the nuclear receptor peroxisome proliferator-activated receptor gamma. Our findings identify fatty acid desaturation by SCD1 as an essential determinant of Treg differentiation and autoimmunity, with potentially broad implications for the development of novel therapeutic strategies and dietary interventions for autoimmune disorders such as MS.


Autoimmune Diseases , Stearoyl-CoA Desaturase , Animals , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Autoimmunity , Fatty Acids/metabolism , Cell Differentiation
9.
Angiogenesis ; 26(3): 349-362, 2023 08.
Article En | MEDLINE | ID: mdl-36867287

Angiogenesis, barriergenesis, and immune cell migration are all key physiological events that are dependent on the functional characteristics of the vascular endothelium. The protein family of Nectins and Nectin-like molecules (Necls) is a group of cell adhesion molecules that are widely expressed by different endothelial cell types. The family includes four Nectins (Nectin-1 to -4) and five Necls (Necl-1 to -5) that either interact with each other by forming homo- and heterotypical interactions or bind to ligands expressed within the immune system. Nectin and Necl proteins are mainly described to play a role in cancer immunology and in the development of the nervous system. However, Nectins and Necls are underestimated players in the formation of blood vessels, their barrier properties, and in guiding transendothelial migration of leukocytes. This review summarizes their role in supporting the endothelial barrier through their function in angiogenesis, cell-cell junction formation, and immune cell migration. In addition, this review provides a detailed overview of the expression patterns of Nectins and Necls in the vascular endothelium.


Cell Adhesion Molecules , Transendothelial and Transepithelial Migration , Nectins , Cell Movement/physiology , Cell Adhesion
10.
Biology (Basel) ; 12(3)2023 Mar 15.
Article En | MEDLINE | ID: mdl-36979144

The superfamily of immunoglobulin cell-adhesion molecules (IgCAMs) is a well-known family of cell-adhesion molecules used for immune-cell extravasation and cell-cell interaction. Amongst others, this family includes DNAX accessory molecule 1 (DNAM-1/CD226), class-I-restricted T-cell-associated molecule (CRTAM/CD355), T-cell-activated increased late expression (Tactile/CD96), T-cell immunoreceptor with Ig and ITIM domains (TIGIT), Nectins and Nectin-like molecules (Necls). Besides using these molecules to migrate towards inflammatory sites, their interactions within the immune system can support the immunological synapse with antigen-presenting cells or target cells for cytotoxicity, and trigger diverse effector functions. Although their role is generally described in oncoimmunity, this review emphasizes recent advances in the (dys)function of Nectin-family ligands in health, chronic inflammatory conditions and autoimmune diseases. In addition, this review provides a detailed overview on the expression pattern of Nectins and Necls and their ligands on different immune-cell types by focusing on human cell systems.

11.
Brain Behav Immun ; 109: 1-22, 2023 03.
Article En | MEDLINE | ID: mdl-36584795

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by focal inflammatory lesions and prominent demyelination. Even though the currently available therapies are effective in treating the initial stages of disease, they are unable to halt or reverse disease progression into the chronic progressive stage. Thus far, no repair-inducing treatments are available for progressive MS patients. Hence, there is an urgent need for the development of new therapeutic strategies either targeting the destructive immunological demyelination or boosting endogenous repair mechanisms. Using in vitro, ex vivo, and in vivo models, we demonstrate that selective inhibition of phosphodiesterase 4 (PDE4), a family of enzymes that hydrolyzes and inactivates cyclic adenosine monophosphate (cAMP), reduces inflammation and promotes myelin repair. More specifically, we segregated the myelination-promoting and anti-inflammatory effects into a PDE4D- and PDE4B-dependent process respectively. We show that inhibition of PDE4D boosts oligodendrocyte progenitor cells (OPC) differentiation and enhances (re)myelination of both murine OPCs and human iPSC-derived OPCs. In addition, PDE4D inhibition promotes in vivo remyelination in the cuprizone model, which is accompanied by improved spatial memory and reduced visual evoked potential latency times. We further identified that PDE4B-specific inhibition exerts anti-inflammatory effects since it lowers in vitro monocytic nitric oxide (NO) production and improves in vivo neurological scores during the early phase of experimental autoimmune encephalomyelitis (EAE). In contrast to the pan PDE4 inhibitor roflumilast, the therapeutic dose of both the PDE4B-specific inhibitor A33 and the PDE4D-specific inhibitor Gebr32a did not trigger emesis-like side effects in rodents. Finally, we report distinct PDE4D isoform expression patterns in human area postrema neurons and human oligodendroglia lineage cells. Using the CRISPR-Cas9 system, we confirmed that pde4d1/2 and pde4d6 are the key targets to induce OPC differentiation. Collectively, these data demonstrate that gene specific PDE4 inhibitors have potential as novel therapeutic agents for targeting the distinct disease processes of MS.


Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Phosphodiesterase 4 Inhibitors , Humans , Mice , Animals , Myelin Sheath/metabolism , Multiple Sclerosis/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 4/therapeutic use , Evoked Potentials, Visual , Oligodendroglia/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Cell Differentiation , Phosphodiesterase 4 Inhibitors/pharmacology , Phosphodiesterase 4 Inhibitors/therapeutic use , Anti-Inflammatory Agents/pharmacology , Mice, Inbred C57BL
12.
Hum Vaccin Immunother ; 18(7): 2153534, 2022 12 30.
Article En | MEDLINE | ID: mdl-36576251

Multiple sclerosis (MS) is an autoimmune disorder causing demyelination and neurodegeneration in the central nervous system. MS is characterized by disturbed motor performance and cognitive impairment. Current MS treatments delay disease progression and reduce relapse rates with general immunomodulation, yet curative therapies are still lacking. Regulatory T cells (Tregs) are able to suppress autoreactive immune cells, which drive MS pathology. However, Tregs are functionally impaired in people with MS. Interestingly, Tregs were recently reported to also have regenerative capacity. Therefore, experts agree that Treg cell therapy has the potential to ameliorate the disease. However, to perform their local anti-inflammatory and regenerative functions in the brain, they must first migrate across the blood-brain barrier (BBB). This review summarizes the reported results concerning the migration of Tregs across the BBB and the influence of Tregs on migration of other immune subsets. Finally, their therapeutic potential is discussed in the context of MS.


Multiple Sclerosis , T-Lymphocytes, Regulatory , Humans , Multiple Sclerosis/therapy , Blood-Brain Barrier/pathology , Immunomodulation
13.
Front Immunol ; 13: 909275, 2022.
Article En | MEDLINE | ID: mdl-35784374

Multiple sclerosis (MS) is a highly debilitating autoimmune disease affecting millions of individuals worldwide. Although classically viewed as T-cell mediated disease, the role of innate lymphoid cells (ILC) such as natural killer (NK) cells and ILC 1-3s has become a focal point as several findings implicate them in the disease pathology. The role of ILCs in MS is still not completely understood as controversial findings have been reported assigning them either a protective or disease-accelerating role. Recent findings in experimental autoimmune encephalomyelitis (EAE) suggest that ILCs infiltrate the central nervous system (CNS), mediate inflammation, and have a disease exacerbating role by influencing the recruitment of autoreactive T-cells. Elucidating the detailed role of ILCs and altered signaling pathways in MS is essential for a more complete picture of the disease pathology and novel therapeutic targets. We here review the current knowledge about ILCs in the development and progression of MS and preclinical models of MS and discuss their potential for therapeutic applications.


Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Humans , Immunity, Innate , Killer Cells, Natural/pathology , Multiple Sclerosis/pathology , T-Lymphocytes/pathology
14.
Front Immunol ; 13: 951900, 2022.
Article En | MEDLINE | ID: mdl-35903098

Once regarded as an experimental artefact, cytotoxic CD4+ T cells (CD4 CTL) are presently recognized as a biologically relevant T cell subset with important functions in anti-viral, anti-tumor, and autoimmune responses. Despite the potentially large impact on their micro-environment, the absolute cell counts of CD4 CTL within the peripheral circulation are relatively low. With the rise of single cell analysis techniques, detection of these cells is greatly facilitated. This led to a renewed appraisal of CD4 CTL and an increased insight into their heterogeneous nature and ontogeny. In this review, we summarize the developmental path from naïve CD4+ T cells to terminally differentiated CD4 CTL, and present markers that can be used to detect or isolate CD4 CTL and their precursors. Subsets of CD4 CTL and their divergent functionalities are discussed. Finally, the importance of local cues as triggers for CD4 CTL differentiation is debated, posing the question whether CD4 CTL develop in the periphery and migrate to site of inflammation when called for, or that circulating CD4 CTL reflect cells that returned to the circulation following differentiation at the local inflammatory site they previously migrated to. Even though much remains to be learned about this intriguing T cell subset, it is clear that CD4 CTL represent interesting therapeutic targets for several pathologies.


T-Lymphocyte Subsets , T-Lymphocytes, Cytotoxic , CD4-Positive T-Lymphocytes , Cell Differentiation , Lymphocyte Count
15.
Acta Neuropathol ; 144(2): 259-281, 2022 08.
Article En | MEDLINE | ID: mdl-35666306

Oncostatin M (OSM) is an IL-6 family member which exerts neuroprotective and remyelination-promoting effects after damage to the central nervous system (CNS). However, the role of OSM in neuro-inflammation is poorly understood. Here, we investigated OSM's role in pathological events important for the neuro-inflammatory disorder multiple sclerosis (MS). We show that OSM receptor (OSMRß) expression is increased on circulating lymphocytes of MS patients, indicating their elevated responsiveness to OSM signalling. In addition, OSM production by activated myeloid cells and astrocytes is increased in MS brain lesions. In experimental autoimmune encephalomyelitis (EAE), a preclinical model of MS, OSMRß-deficient mice exhibit milder clinical symptoms, accompanied by diminished T helper 17 (Th17) cell infiltration into the CNS and reduced BBB leakage. In vitro, OSM reduces BBB integrity by downregulating the junctional molecules claudin-5 and VE-cadherin, while promoting secretion of the Th17-attracting chemokine CCL20 by inflamed BBB-endothelial cells and reactive astrocytes. Using flow cytometric fluorescence resonance energy transfer (FRET) quantification, we found that OSM-induced endothelial CCL20 promotes activation of lymphocyte function-associated antigen 1 (LFA-1) on Th17 cells. Moreover, CCL20 enhances Th17 cell adhesion to OSM-treated inflamed endothelial cells, which is at least in part ICAM-1 mediated. Together, these data identify an OSM-CCL20 axis, in which OSM contributes significantly to BBB impairment during neuro-inflammation by inducing permeability while recruiting Th17 cells via enhanced endothelial CCL20 secretion and integrin activation. Therefore, care should be taken when considering OSM as a therapeutic agent for treatment of neuro-inflammatory diseases such as MS.


Blood-Brain Barrier , Encephalomyelitis, Autoimmune, Experimental , Oncostatin M , Animals , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Mice , Mice, Inbred C57BL , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Oncostatin M/metabolism , Oncostatin M/pharmacology , Oncostatin M Receptor beta Subunit/biosynthesis , Oncostatin M Receptor beta Subunit/genetics , Th17 Cells/metabolism , Th17 Cells/pathology
16.
Cells ; 11(10)2022 05 13.
Article En | MEDLINE | ID: mdl-35626671

The effector programs of CD8+ memory T cells are influenced by the transcription factors RUNX3, EOMES and T-bet. How these factors define brain-homing CD8+ memory T cells in multiple sclerosis (MS) remains unknown. To address this, we analyzed blood, CSF and brain tissues from MS patients for the impact of differential RUNX3, EOMES and T-bet expression on CD8+ T cell effector phenotypes. The frequencies of RUNX3- and EOMES-, but not T-bet-expressing CD8+ memory T cells were reduced in the blood of treatment-naïve MS patients as compared to healthy controls. Such reductions were not seen in MS patients treated with natalizumab (anti-VLA-4 Ab). We found an additional loss of T-bet in RUNX3-expressing cells, which was associated with the presence of MS risk SNP rs6672420 (RUNX3). RUNX3+EOMES+T-bet- CD8+ memory T cells were enriched for the brain residency-associated markers CCR5, granzyme K, CD20 and CD69 and selectively dominated the MS CSF. In MS brain tissues, T-bet coexpression was recovered in CD20dim and CD69+ CD8+ T cells, and was accompanied by increased coproduction of granzyme K and B. These results indicate that coexpression of RUNX3 and EOMES, but not T-bet, defines CD8+ memory T cells with a pre-existing brain residency-associated phenotype such that they are prone to enter the CNS in MS.


CD8-Positive T-Lymphocytes , Multiple Sclerosis , Brain/metabolism , CD8-Positive T-Lymphocytes/metabolism , Granzymes/metabolism , Humans , Multiple Sclerosis/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism
17.
Biomedicines ; 10(2)2022 Jan 18.
Article En | MEDLINE | ID: mdl-35203413

BACKGROUND: Spinal cord injury (SCI) elicits robust neuroinflammation that eventually exacerbates the initial damage to the spinal cord. L-arginine is critical for the responsiveness of T cells, which are important contributors to neuroinflammation after SCI. Furthermore, L-arginine is the substrate for nitric oxide (NO) production, which is a known inducer of secondary damage. METHODS: To accomplish systemic L-arginine depletion, repetitive injections of recombinant arginase-1 (rArg-I) were performed. Functional recovery and histopathological parameters were analyzed. Splenic immune responses were evaluated by flow cytometry. Pro-inflammatory gene expression and nitrite concentrations were measured. RESULTS: We show for the first time that systemic L-arginine depletion improves locomotor recovery. Flow cytometry and immunohistological analysis showed that intraspinal T-cell infiltration was reduced by 65%, and peripheral numbers of Th1 and Th17 cells were suppressed. Moreover, rArg-I treatment reduced the intraspinal NO production by 40%. Histopathological analyses revealed a 37% and 36% decrease in the number of apoptotic neurons and neuron-macrophage/microglia contacts in the spinal cord, respectively. CONCLUSIONS: Targeting detrimental T-cell responses and NO-production via rArg-I led to a reduced neuronal cell death and an improved functional recovery. These findings indicate that L-arginine depletion holds promise as a therapeutic strategy after SCI.

18.
Clin Rev Allergy Immunol ; 62(2): 363-381, 2022 Apr.
Article En | MEDLINE | ID: mdl-34224053

Autoimmunity is caused by an unbalanced immune system, giving rise to a variety of organ-specific to system disorders. Patients with autoimmune diseases are commonly treated with broad-acting immunomodulatory drugs, with the risk of severe side effects. Regulatory T cells (Tregs) have the inherent capacity to induce peripheral tolerance as well as tissue regeneration and are therefore a prime candidate to use as cell therapy in patients with autoimmune disorders. (Pre)clinical studies using Treg therapy have already established safety and feasibility, and some show clinical benefits. However, Tregs are known to be functionally impaired in autoimmune diseases. Therefore, ex vivo manipulation to boost and stably maintain their suppressive function is necessary when considering autologous transplantation. Similar to autoimmunity, severe coronavirus disease 2019 (COVID-19) is characterized by an exaggerated immune reaction and altered Treg responses. In light of this, Treg-based therapies are currently under investigation to treat severe COVID-19. This review provides a detailed overview of the current progress and clinical challenges of Treg therapy for autoimmune and hyperinflammatory diseases, with a focus on recent successes of ex vivo Treg manipulation.


Autoimmune Diseases , COVID-19 , Autoimmune Diseases/therapy , Autoimmunity , COVID-19/therapy , Humans , Immunotherapy, Adoptive , T-Lymphocytes, Regulatory
19.
J Neuroinflammation ; 18(1): 255, 2021 Nov 05.
Article En | MEDLINE | ID: mdl-34740381

BACKGROUND: Multiple sclerosis (MS) is a chronic autoimmune disease driven by sustained inflammation in the central nervous system. One of the pathological hallmarks of MS is extensive free radical production. However, the subsequent generation, potential pathological role, and detoxification of different lipid peroxidation-derived reactive carbonyl species during neuroinflammation are unclear, as are the therapeutic benefits of carbonyl quenchers. Here, we investigated the reactive carbonyl acrolein and (the therapeutic effect of) acrolein quenching by carnosine during neuroinflammation. METHODS: The abundance and localization of acrolein was investigated in inflammatory lesions of MS patients and experimental autoimmune encephalomyelitis (EAE) mice. In addition, we analysed carnosine levels and acrolein quenching by endogenous and exogenous carnosine in EAE. Finally, the therapeutic effect of exogenous carnosine was assessed in vivo (EAE) and in vitro (primary mouse microglia, macrophages, astrocytes). RESULTS: Acrolein was substantially increased in inflammatory lesions of MS patients and EAE mice. Levels of the dipeptide carnosine (ß-alanyl-L-histidine), an endogenous carbonyl quencher particularly reactive towards acrolein, and the carnosine-acrolein adduct (carnosine-propanal) were ~ twofold lower within EAE spinal cord tissue. Oral carnosine treatment augmented spinal cord carnosine levels (up to > tenfold), increased carnosine-acrolein quenching, reduced acrolein-protein adduct formation, suppressed inflammatory activity, and alleviated clinical disease severity in EAE. In vivo and in vitro studies indicate that pro-inflammatory microglia/macrophages generate acrolein, which can be efficiently quenched by increasing carnosine availability, resulting in suppressed inflammatory activity. Other properties of carnosine (antioxidant, nitric oxide scavenging) may also contribute to the therapeutic effects. CONCLUSIONS: Our results identify carbonyl (particularly acrolein) quenching by carnosine as a therapeutic strategy to counter inflammation and macromolecular damage in MS.


Acrolein/metabolism , Autoimmune Diseases of the Nervous System/metabolism , Autoimmune Diseases of the Nervous System/pathology , Carnosine/pharmacology , Neuroinflammatory Diseases/metabolism , Animals , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology
20.
Int J Mol Sci ; 22(11)2021 May 26.
Article En | MEDLINE | ID: mdl-34073458

Cytotoxic CD4+ T cells (CD4 CTL) are terminally differentiated T helper cells that contribute to autoimmune diseases, such as multiple sclerosis. We developed a novel triple co-culture transwell assay to study mutual interactions between CD4 CTL, conventional TH cells, and regulatory T cells (Tregs) simultaneously. We show that, while CD4 CTL are resistant to suppression by Tregs in vitro, the conditioned medium of CD4 CTL accentuates the suppressive phenotype of Tregs by upregulating IL-10, Granzyme B, CTLA-4, and PD-1. We demonstrate that CD4 CTL conditioned medium skews memory TH cells to a TH17 phenotype, suggesting that the CD4 CTL induce bystander polarization. In our triple co-culture assay, the CD4 CTL secretome promotes the proliferation of TH cells, even in the presence of Tregs. However, when cell-cell contact is established between CD4 CTL and TH cells, the proliferation of TH cells is no longer increased and Treg-mediated suppression is restored. Taken together, our results suggest that when TH cells acquire cytotoxic properties, these Treg-resistant CD4 CTL affect the proliferation and phenotype of conventional TH cells in their vicinity. By creating such a pro-inflammatory microenvironment, CD4 CTL may favor their own persistence and expansion, and that of other potentially pathogenic TH cells, thereby contributing to pathogenic responses in autoimmune disorders.


Autoimmune Diseases/immunology , Cell Proliferation , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Adult , CTLA-4 Antigen/immunology , Female , Granzymes/immunology , Humans , Interleukin-10/immunology , Male , Middle Aged , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes, Regulatory/cytology , Th17 Cells/cytology
...