Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 13(28): 12327-12341, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34254598

RESUMEN

The integration of graphene, and more broadly two-dimensional materials, into devices and hybrid materials often requires the deposition of thin films on their usually inert surface. As a result, strategies for the introduction of surface reactive sites have been developed but currently pose a dilemma between robustness and preservation of the graphene properties. A method is reported here for covalently modifying graphitic surfaces, introducing functional groups that act as reactive sites for the growth of high quality dielectric layers. Aryl diazonium species containing tri-methoxy groups are covalently bonded (grafted) to highly oriented pyrolytic graphite (HOPG) and graphene, acting as seeding species for atomic layer deposition (ALD) of Al2O3, a high-κ dielectric material. A smooth and uniform dielectric film growth is confirmed by scanning electron microscopy (SEM), atomic force microscopy (AFM) and electrical measurements. Raman spectroscopy showed that the aryl groups gradually detach from the graphitic surface during the Al2O3 ALD process at 150 °C, with the surface reverting back to the original sp2-hybridized state and without damaging the dielectric layer. Thus, the grafted aryl groups can act as a sacrificial seeding layer after healing the defects of the graphitic surface with annealing treatment.

2.
Nanoscale ; 12(36): 18782-18789, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32970069

RESUMEN

The chemistry of carbon surfaces has regained traction in recent years in view of its applicability towards covalent modification of a variety of (2D) materials. A general requisite is the formation of a dense and well-defined monolayer of aryl groups covalently bound to the surface. Given the use of reactive chemistries however, it is often not easy to achieve precise control over the monolayer growth while maintaining high grafting densities. Here we present a straightforward experimental protocol for the fabrication of well-defined covalent monolayers onto the surface of graphite. Using a combination of surface analytical tools, we demonstrate that the ascorbic acid mediated dediazoniation of aryldiazonium salts leads to self-limiting growth of monolayers with high grafting densities. The aryl radicals preferentially attach to the basal plane of the substrate and once the surface is covered with a covalent monolayer, the surface reaction does not proceed further to an appreciable extent. The layer thickness of the covalent films was measured using atomic force microscopy whereas the grafting efficiencies were assessed using Raman spectroscopy. The chemical composition of the grafted films was studied using X-ray photoelectron spectroscopy whereas scanning tunneling microscopy provided nanometer scale insight into the structure of the covalent films. Mechanistic aspects of the process are also discussed. The self-terminating chemistry described here is a new addition to the synthetic armory for covalent modification of materials and sets a strong foundation for achieving precise nanoscale control over the covalent functionalization process.

3.
J Am Chem Soc ; 142(16): 7699-7708, 2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32212655

RESUMEN

Controlled covalent functionalization of graphitic surfaces with molecular scale precision is crucial for tailored modulation of the chemical and physical properties of carbon materials. We herein present that porous self-assembled molecular networks (SAMNs) act as nanometer scale template for the covalent electrochemical functionalization of graphite using an aryldiazonium salt. Hexagonally aligned achiral grafted species with lateral periodicity of 2.3, 2.7, and 3.0 nm were achieved utilizing SAMNs having different pore-to-pore distances. The unit cell vectors of the grafted pattern match those of the SAMN. After the covalent grafting, the template SAMNs can be removed by simple washing with a common organic solvent. We briefly discuss the mechanism of the observed pattern transfer. The unit cell vectors of the grafted pattern align along nonsymmetry axes of graphite, leading to mirror image grafted domains, in accordance with the domain-specific chirality of the template. In the case in which a homochiral building block is used for SAMN formation, one of the 2D mirror image grafted patterns is canceled. This is the first example of a nearly crystalline one-sided or supratopic covalent chemical functionalization. In addition, the positional control imposed by the SAMN renders the functionalized surface (homo)chiral reaching a novel level of control for the functionalization of carbon surfaces, including surface-supported graphene.

4.
Sci Rep ; 10(1): 4114, 2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32139839

RESUMEN

Chemical reaction with diazonium molecules has revealed to be a powerful method for the surface chemical modification of graphite, carbon nanotubes and recently also of graphene. Graphene electronic structure modification using diazonium molecules is strongly influenced by graphene growth and by the supporting materials. Here, carrying on a detailed study of core levels and valence band photoemission measurements, we are able to reconstruct the interface chemistry of trimethoxybenzenediazonium-based molecules electrochemically grafted on graphene on copper. The band energy alignment at the molecule-graphene interface has been traced revealing the energy position of the HOMO band with respect to the Fermi level.

5.
Langmuir ; 35(6): 2089-2098, 2019 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-30626188

RESUMEN

Grafting of aryl radicals generated by electrochemical reduction of aryldiazonium salts has been extensively studied on various surfaces. However, there exists two unclear aspects; the first one is the generality of the blocking ability of simple functional groups toward multilayer growth, and the second one is the electronic impact of substituent groups of aryl radicals on grafting efficiency. To address these aspects, we have studied the electrochemical functionalization of graphite using aryldiazonium salts having electron-donating or electron-withdrawing groups at the 3,4,5-positions. Atomic force microscopy investigation of the functionalized surfaces revealed the formation of monolayers for all aryldiazonium salts, and thus, nitro, carboxy, ester, methyl, and methoxy groups at the 3,4,5-positions of the benzene ring suppress polyaryl growth. The degree of grafting estimated by scanning tunneling microscopy imaging and Raman spectroscopy of the functionalized surfaces depends on the electronic state of the aryl radicals, in which the radicals with electron-donating groups show a high degree of functionalization, whereas those with electron-withdrawing groups exhibit a low degree of functionalization. We discuss several possibilities that affect grafting density. Though there are several factors, we hypothesize that one factor to explain the observed reactivity trend is the electronic property of the aryl radicals, namely, the relative position of the singly occupied molecular orbital energy levels of the aryl radicals with respect to the graphite Fermi energy level.

6.
ACS Nano ; 12(11): 11520-11528, 2018 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-30387985

RESUMEN

An approach for nanoscale covalent functionalization of graphite surfaces employing self-assembled molecular monolayers of n-alkanes as templating masks is presented. Linearly aligned aryl groups with a lateral periodicity of 5 or 7 nm are demonstrated utilizing molecular templates of different lengths. The key feature of this approach is the use of a phase separated solution double layer consisting of a thin organic layer containing template molecules topped by an aqueous layer containing aryldiazonium molecules capable of electrochemical reduction to generate aryl radicals which bring about surface grafting. Upon sweeping of the potential, lateral displacement dynamics at the n-alkane terminal edges acts in conjunction with electrochemical diffusion to result in templated covalent bond formation in a linear fashion. This protocol was demonstrated to be applicable to linear grafting of graphene. The present processing described herein is useful for the realization of rationally designed nanoscale materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA