Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2769, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38553486

RESUMEN

Multiple neurological disorders are associated with gastrointestinal (GI) symptoms, including autism spectrum disorder (ASD). However, it is unclear whether GI distress itself can modify aspects of behavior. Here, we show that mice that experience repeated colitis have impaired active social engagement, as measured by interactions with a foreign mouse, even though signs of colitis were no longer present. We then tested the hypothesis that individuals with ASD harbor a microbiota that might differentially influence GI health by performing microbiota transplantation studies into male germfree animals, followed by induction of colitis. Animals that harbor a microbiota from ASD individuals have worsened gut phenotypes when compared to animals colonized with microbiotas from familial neurotypical (NT) controls. We identify the enrichment of Blautia species in all familial NT controls and observe an association between elevated abundance of Bacteroides uniformis and reductions in intestinal injury. Oral treatment with either of these microbes reduces colon injury in mice. Finally, provision of a Blautia isolate from a NT control ameliorates gut injury-associated active social engagement in mice. Collectively, our data demonstrate that past intestinal distress is associated with changes in active social behavior in mice that can be ameliorated by supplementation of members of the human microbiota.


Asunto(s)
Trastorno del Espectro Autista , Colitis , Enfermedades Gastrointestinales , Microbiota , Humanos , Masculino , Ratones , Animales , Trastorno del Espectro Autista/terapia , Participación Social , Colitis/terapia , Suplementos Dietéticos
2.
Pathog Immun ; 8(1): 64-76, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37830077

RESUMEN

Background: Cutibacterium acnes is a common commensal of human skin but may also present as an opportunistic pathogen in prosthetic joint and wound infections. Unfortunately, few complete genomes of C. acnes are publicly available, and even fewer are of isolates associated with infection. Here we report the isolation, characterization, and complete genomes of 2 C. acnes isolates from a surgical site infection of an elbow. Methods: We used standard microbiological methods for phenotypic characterization and performed whole genome sequencing on 2 C. acnes isolates using a combination of short-read and long-read sequencing. Results: Antibiotic susceptibility testing showed beta-lactamase negative and low minimal inhibitory concentrations to all antibiotics tested, with the exception of metronidazole. We assembled complete genomes of the 2 isolates, which are approximately 2.5 megabases in length. The isolates belong to the single-locus sequence type (SLST) H1 and the multi-locus sequence type (MLST) IB. Both isolates have similar composition of known virulence genes, and we found no evidence of plasmids but did find phage-associated genes. Notably, the 2 genomes are 99.97% identical but contain a large genomic inversion encompassing approximately half of the genome. Conclusions: This is the first characterization of this large-scale genomic inversion in nearly identical isolates from the same wound. This report adds to the limited numbers of publicly available infection-associated complete genomes of C. acnes.

3.
JCI Insight ; 7(19)2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36214220

RESUMEN

Intercellular communication is critical for homeostasis in mammalian systems, including the gastrointestinal (GI) tract. Exosomes are nanoscale lipid extracellular vesicles that mediate communication between many cell types. Notably, the roles of immune cell exosomes in regulating GI homeostasis and inflammation are largely uncharacterized. By generating mouse strains deficient in cell-specific exosome production, we demonstrate deletion of the small GTPase Rab27A in CD11c+ cells exacerbated murine colitis, which was reversible through administration of DC-derived exosomes. Profiling RNAs within colon exosomes revealed a distinct subset of miRNAs carried by colon- and DC-derived exosomes. Among antiinflammatory exosomal miRNAs, miR-146a was transferred from gut immune cells to myeloid and T cells through a Rab27-dependent mechanism, targeting Traf6, IRAK-1, and NLRP3 in macrophages. Further, we have identified a potentially novel mode of exosome-mediated DC and macrophage crosstalk that is capable of skewing gut macrophages toward an antiinflammatory phenotype. Assessing clinical samples, RAB27A, select miRNAs, and RNA-binding proteins that load exosomal miRNAs were dysregulated in ulcerative colitis patient samples, consistent with our preclinical mouse model findings. Together, our work reveals an exosome-mediated regulatory mechanism underlying gut inflammation and paves the way for potential use of miRNA-containing exosomes as a novel therapeutic for inflammatory bowel disease.


Asunto(s)
Antígenos CD11 , Colitis , Exosomas , Inflamación , Células Mieloides , Animales , Antígenos CD11/genética , Antígenos CD11/inmunología , Colitis/genética , Colitis/inmunología , Exosomas/genética , Exosomas/inmunología , Inflamación/genética , Inflamación/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Intestinos/inmunología , Lípidos , Mamíferos/genética , Mamíferos/inmunología , Ratones , MicroARNs/inmunología , Proteínas de Unión al GTP Monoméricas/inmunología , Células Mieloides/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Factor 6 Asociado a Receptor de TNF/inmunología
4.
J Neuroinflammation ; 17(1): 291, 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33023618

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is an inflammatory demyelinating disease that affects 2.5 million people worldwide. Growing evidence suggests that perturbation of the gut microbiota, the dense collection of microorganisms that colonize the gastrointestinal tract, plays a functional role in MS. Indeed, specific gut-resident bacteria are altered in patients with MS compared to healthy individuals, and colonization of gnotobiotic mice with MS-associated microbiota exacerbates preclinical models of MS. However, defining the molecular mechanisms by which gut commensals can remotely affect the neuroinflammatory process remains a critical gap in the field. METHODS: We utilized monophasic experimental autoimmune encephalomyelitis (EAE) in C57BL/6J mice and relapse-remitting EAE in SJL/J mice to test the effects of the products from a human gut-derived commensal strain of Lactobacillus paracasei (Lb). RESULTS: We report that Lb can ameliorate preclinical murine models of MS with both prophylactic and therapeutic administrations. Lb ameliorates disease through a Toll-like receptor 2-dependent mechanism via its microbe-associated molecular patterns that can be detected in the systemic circulation, are sufficient to downregulate chemokine production, and can reduce immune cell infiltration into the central nervous system (CNS). In addition, alterations in the gut microbiota mediated by Lb-associated molecular patterns are sufficient to provide partial protection against neuroinflammatory diseases. CONCLUSIONS: Local Lb modulation of the gut microbiota and the shedding of Lb-associated molecular patterns into the circulation may be important physiological signals to prevent aberrant peripheral immune cell infiltration into the CNS and have relevance to the development of new therapeutic strategies for MS.


Asunto(s)
Sistema Nervioso Central/inmunología , Microbioma Gastrointestinal/inmunología , Lacticaseibacillus paracasei/inmunología , Leucocitos/inmunología , Animales , Sistema Nervioso Central/patología , Femenino , Humanos , Leucocitos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
5.
Elife ; 82019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31309928

RESUMEN

Symbiotic microbes impact the function and development of the central nervous system (CNS); however, little is known about the contribution of the microbiota during viral-induced neurologic damage. We identify that commensals aid in host defense following infection with a neurotropic virus through enhancing microglia function. Germfree mice or animals that receive antibiotics are unable to control viral replication within the brain leading to increased paralysis. Microglia derived from germfree or antibiotic-treated animals cannot stimulate viral-specific immunity and microglia depletion leads to worsened demyelination. Oral administration of toll-like receptor (TLR) ligands to virally infected germfree mice limits neurologic damage. Homeostatic activation of microglia is dependent on intrinsic signaling through TLR4, as disruption of TLR4 within microglia, but not the entire CNS (excluding microglia), leads to increased viral-induced clinical disease. This work demonstrates that gut immune-stimulatory products can influence microglia function to prevent CNS damage following viral infection.


Asunto(s)
Encefalitis Viral/patología , Encefalitis Viral/prevención & control , Microbioma Gastrointestinal/inmunología , Microglía/inmunología , Transducción de Señal , Simbiosis , Receptores Toll-Like/metabolismo , Animales , Modelos Animales de Enfermedad , Vida Libre de Gérmenes , Ratones
6.
Cell Host Microbe ; 25(2): 285-299.e8, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30763538

RESUMEN

Bacteriophages are the most abundant members of the microbiota and have the potential to shape gut bacterial communities. Changes to bacteriophage composition are associated with disease, but how phages impact mammalian health remains unclear. We noted an induction of host immunity when experimentally treating bacterially driven cancer, leading us to test whether bacteriophages alter immune responses. Treating germ-free mice with bacteriophages leads to immune cell expansion in the gut. Lactobacillus, Escherichia, and Bacteroides bacteriophages and phage DNA stimulated IFN-γ via the nucleotide-sensing receptor TLR9. The resultant immune responses were both phage and bacteria specific. Additionally, increasing bacteriophage levels exacerbated colitis via TLR9 and IFN-γ. Similarly, ulcerative colitis (UC) patients responsive to fecal microbiota transplantation (FMT) have reduced phages compared to non-responders, and mucosal IFN-γ positively correlates with bacteriophage levels. Bacteriophages from active UC patients induced more IFN-γ compared to healthy individuals. Collectively, these results indicate that bacteriophages can alter mucosal immunity to impact mammalian health.


Asunto(s)
Bacterias/virología , Bacteriófagos , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/microbiología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/microbiología , Microbioma Gastrointestinal , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Animales , Linfocitos T CD4-Positivos/metabolismo , Colitis Ulcerosa/patología , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Trasplante de Microbiota Fecal , Humanos , Interferón gamma/metabolismo , Mucosa Intestinal/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proyectos Piloto , Estudios Prospectivos , Organismos Libres de Patógenos Específicos
7.
Cell ; 171(3): 503-505, 2017 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-29053967

RESUMEN

Inflammatory bowel disease is thought to arise from inappropriate inflammation to gut bacteria, yet mechanisms preventing these responses remain elusive. In this issue of Cell, Nanjundappa et al. report that Bacteroides share an epitope with a pancreas-specific peptide that induces protective CD8+ T cells, identifying molecular mimicry as a mechanism to enforce tolerance in the gut.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Amigos , Humanos , Intestinos , Imitación Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...