Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4266, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769298

RESUMEN

Cancer cells exhibit distinct metabolic activities and nutritional dependencies compared to normal cells. Thus, characterization of nutrient demands by individual tumor types may identify specific vulnerabilities that can be manipulated to target the destruction of cancer cells. We find that MYC-driven liver tumors rely on augmented tryptophan (Trp) uptake, yet Trp utilization to generate metabolites in the kynurenine (Kyn) pathway is reduced. Depriving MYC-driven tumors of Trp through a No-Trp diet not only prevents tumor growth but also restores the transcriptional profile of normal liver cells. Despite Trp starvation, protein synthesis remains unhindered in liver cancer cells. We define a crucial role for the Trp-derived metabolite indole 3-pyruvate (I3P) in liver tumor growth. I3P supplementation effectively restores the growth of liver cancer cells starved of Trp. These findings suggest that I3P is a potential therapeutic target in MYC-driven cancers. Developing methods to target this metabolite represents a potential avenue for liver cancer treatment.


Asunto(s)
Carcinogénesis , Indoles , Neoplasias Hepáticas , Proteínas Proto-Oncogénicas c-myc , Triptófano , Triptófano/metabolismo , Animales , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Indoles/metabolismo , Indoles/farmacología , Humanos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Ratones , Carcinogénesis/metabolismo , Carcinogénesis/genética , Línea Celular Tumoral , Quinurenina/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Hígado/patología , Masculino
2.
J Biol Chem ; 300(3): 105773, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38382671

RESUMEN

The nucleolus, a membrane-less organelle, is responsible for ribosomal RNA transcription, ribosomal RNA processing, and ribosome assembly. Nucleolar size and number are indicative of a cell's protein synthesis rate and proliferative capacity, and abnormalities in the nucleolus have been linked to neurodegenerative diseases and cancer. In this study, we demonstrated that the nucleolar protein ZNF692 directly interacts with nucleophosmin 1 (NPM1). Knocking down ZNF692 resulted in the nucleolar redistribution of NPM1 in ring-like structures and reduced protein synthesis. Purified NPM1 forms spherical condensates in vitro but mixing it with ZNF692 produces irregular condensates more closely resembling living cell nucleoli. Our findings indicate that ZNF692, by interacting with NPM1, plays a critical role in regulating nucleolar architecture and function in living cells.


Asunto(s)
Nucléolo Celular , Proteínas de Unión al ADN , Nucleofosmina , Factores de Transcripción , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Proteínas Nucleares/metabolismo , Unión Proteica , ARN Ribosómico/metabolismo , Humanos , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismo
3.
Cell Rep ; 42(10): 113280, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37851577

RESUMEN

Increased nucleolar size and activity correlate with aberrant ribosome biogenesis and enhanced translation in cancer cells. One of the first and rate-limiting steps in translation is the interaction of the 40S small ribosome subunit with mRNAs. Here, we report the identification of the zinc finger protein 692 (ZNF692), a MYC-induced nucleolar scaffold that coordinates the final steps in the biogenesis of the small ribosome subunit. ZNF692 forms a hub containing the exosome complex and ribosome biogenesis factors specialized in the final steps of 18S rRNA processing and 40S ribosome maturation in the granular component of the nucleolus. Highly proliferative cells are more reliant on ZNF692 than normal cells; thus, we conclude that effective production of small ribosome subunits is critical for translation efficiency in cancer cells.


Asunto(s)
Proteínas de Unión al ADN , Biosíntesis de Proteínas , Proteínas Ribosómicas , Subunidades Ribosómicas Pequeñas de Eucariotas , Factores de Transcripción , Nucléolo Celular/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Ribosomas/metabolismo , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , Humanos , Animales , Ratas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Mol Biol Cell ; 34(2): ar9, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36542482

RESUMEN

We previously identified the mechanistic target of rapamycin complex 2 (mTORC2) as an effector of Ras for the control of directed cell migration in Dictyostelium. Recently, the Ras-mediated regulation of mTORC2 was found to be conserved in mammalian cells, and mTORC2 was shown to be an effector of oncogenic Ras. Interestingly, mTORC2 has been linked to cancer cell migration, and particularly in breast cancer. Here, we investigated the role of Ras in promoting the migration and invasion of breast cancer cells through mTORC2. We observed that both Ras and mTORC2 promote the migration of different breast cancer cells and breast cancer cell models. Using HER2 and oncogenic Ras-transformed breast epithelial MCF10A cells, we found that both wild-type Ras and oncogenic Ras promote mTORC2 activation and an mTORC2-dependent migration and invasion in these breast cancer models. We further observed that, whereas oncogenic Ras-transformed MCF10A cells display uncontrolled cell proliferation and invasion, disruption of mTORC2 leads to loss of invasiveness only. Together, our findings suggest that, whereas the Ras-mediated activation of mTORC2 is expected to play a minor role in breast tumor formation, the Ras-mTORC2 pathway plays an important role in promoting the migration and invasion of breast cancer cells.


Asunto(s)
Neoplasias de la Mama , Dictyostelium , Animales , Femenino , Humanos , Neoplasias de la Mama/patología , Movimiento Celular/fisiología , Dictyostelium/metabolismo , Células Epiteliales/metabolismo , Mamíferos/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Sirolimus , Proteínas ras/metabolismo
5.
Cells ; 11(3)2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-35159381

RESUMEN

The nucleolus harbors the machinery necessary to produce new ribosomes which are critical for protein synthesis. Nucleolar size, shape, and density are highly dynamic and can be adjusted to accommodate ribosome biogenesis according to the needs for protein synthesis. In cancer, cells undergo continuous proliferation; therefore, nucleolar activity is elevated due to their high demand for protein synthesis. The transcription factor and universal oncogene MYC promotes nucleolar activity by enhancing the transcription of ribosomal DNA (rDNA) and ribosomal proteins. This review summarizes the importance of nucleolar activity in mammalian cells, MYC's role in nucleolar regulation in cancer, and discusses how a better understanding (and the potential inhibition) of aberrant nucleolar activity in cancer cells could lead to novel therapeutics.


Asunto(s)
Neoplasias , ARN Ribosómico , Animales , Nucléolo Celular/metabolismo , ADN Ribosómico/genética , Mamíferos/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Biosíntesis de Proteínas , ARN Ribosómico/genética , Ribosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...