Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
2.
EMBO Mol Med ; 15(12): e17932, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37970627

RESUMEN

Viruses are vulnerable as they transmit between hosts, and we aimed to exploit this critical window. We found that the ubiquitous, safe, inexpensive and biodegradable small molecule propylene glycol (PG) has robust virucidal activity. Propylene glycol rapidly inactivates a broad range of viruses including influenza A, SARS-CoV-2 and rotavirus and reduces disease burden in mice when administered intranasally at concentrations commonly found in nasal sprays. Most critically, vaporised PG efficiently abolishes influenza A virus and SARS-CoV-2 infectivity within airborne droplets, potently preventing infection at levels well below those tolerated by mammals. We present PG vapour as a first-in-class non-toxic airborne virucide that can prevent transmission of existing and emergent viral pathogens, with clear and immediate implications for public health.


Asunto(s)
COVID-19 , Virus de la Influenza A , Gripe Humana , Animales , Ratones , Humanos , Aerosoles y Gotitas Respiratorias , COVID-19/prevención & control , Glicoles de Propileno , Mamíferos
3.
PLoS Pathog ; 19(11): e1011589, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37934791

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to evolve throughout the coronavirus disease-19 (COVID-19) pandemic, giving rise to multiple variants of concern (VOCs) with different biological properties. As the pandemic progresses, it will be essential to test in near real time the potential of any new emerging variant to cause severe disease. BA.1 (Omicron) was shown to be attenuated compared to the previous VOCs like Delta, but it is possible that newly emerging variants may regain a virulent phenotype. Hamsters have been proven to be an exceedingly good model for SARS-CoV-2 pathogenesis. Here, we aimed to develop robust quantitative pipelines to assess the virulence of SARS-CoV-2 variants in hamsters. We used various approaches including RNAseq, RNA in situ hybridization, immunohistochemistry, and digital pathology, including software assisted whole section imaging and downstream automatic analyses enhanced by machine learning, to develop methods to assess and quantify virus-induced pulmonary lesions in an unbiased manner. Initially, we used Delta and Omicron to develop our experimental pipelines. We then assessed the virulence of recent Omicron sub-lineages including BA.5, XBB, BQ.1.18, BA.2, BA.2.75 and EG.5.1. We show that in experimentally infected hamsters, accurate quantification of alveolar epithelial hyperplasia and macrophage infiltrates represent robust markers for assessing the extent of virus-induced pulmonary pathology, and hence virus virulence. In addition, using these pipelines, we could reveal how some Omicron sub-lineages (e.g., BA.2.75 and EG.5.1) have regained virulence compared to the original BA.1. Finally, to maximise the utility of the digital pathology pipelines reported in our study, we developed an online repository containing representative whole organ histopathology sections that can be visualised at variable magnifications (https://covid-atlas.cvr.gla.ac.uk). Overall, this pipeline can provide unbiased and invaluable data for rapidly assessing newly emerging variants and their potential to cause severe disease.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Humanos , SARS-CoV-2/genética , Virulencia , Aprendizaje Automático
4.
Sci Rep ; 13(1): 19052, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923786

RESUMEN

The Streptococcus pyogenes cell envelope protease (SpyCEP) is vital to streptococcal pathogenesis and disease progression. Despite its strong association with invasive disease, little is known about enzymatic function beyond the ELR+ CXC chemokine substrate range. As a serine protease, SpyCEP has a catalytic triad consisting of aspartate (D151), histidine (H279), and serine (S617) residues which are all thought to be mandatory for full activity. We utilised a range of SpyCEP constructs to investigate the protein domains and catalytic residues necessary for enzyme function. We designed a high-throughput mass spectrometry assay to measure CXCL8 cleavage and applied this for the first time to study the enzyme kinetics of SpyCEP. Results revealed a remarkably low Michaelis-Menton constant (KM) of 82 nM and a turnover of 1.65 molecules per second. We found that an N-terminally-truncated SpyCEP C-terminal construct containing just the catalytic dyad of H279 and S617 was capable of cleaving CXCL8 with a similar KM of 55 nM, albeit with a reduced substrate turnover of 2.7 molecules per hour, representing a 2200-fold reduction in activity. We conclude that the SpyCEP C-terminus plays a key role in high affinity substrate recognition and binding, but that the N-terminus is required for full catalytic activity.


Asunto(s)
Péptido Hidrolasas , Streptococcus pyogenes , Streptococcus pyogenes/metabolismo , Péptido Hidrolasas/metabolismo , Dominios Proteicos
5.
Proc Natl Acad Sci U S A ; 120(45): e2308655120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37903249

RESUMEN

The ongoing SARS-CoV-2 epidemic was marked by the repeated emergence and replacement of "variants" with genetic and phenotypic distance from the ancestral strains, the most recent examples being viruses of the Omicron lineage. Here, we describe a hamster direct contact exposure challenge model to assess protection against reinfection conferred by either vaccination or prior infection. We found that two doses of self-amplifying RNA vaccine based on the ancestral Spike ameliorated weight loss following Delta infection and decreased viral loads but had minimal effect on Omicron BA.1 infection. Prior vaccination followed by Delta or BA.1 breakthrough infections led to a high degree of cross-reactivity to all tested variants, suggesting that repeated exposure to antigenically distinct Spikes, via infection and/or vaccination drives a cross-reactive immune response. Prior infection with ancestral or Alpha variant was partially protective against BA.1 infection, whereas all animals previously infected with Delta and exposed to BA.1 became reinfected, although they shed less virus than BA.1-infected naive hamsters. Hamsters reinfected with BA.1 after prior Delta infection emitted infectious virus into the air, indicating that they could be responsible for onwards airborne transmission. We further tested whether prior infection with BA.1 protected from reinfection with Delta or later Omicron sublineages BA.2, BA.4, or BA.5. BA.1 was protective against BA.2 but not against Delta, BA.4, or BA.5 reinfection. These findings suggest that cohorts whose only immune experience of COVID-19 is Omicron BA.1 infection may be vulnerable to future circulation of reemerged Delta-like derivatives, as well as emerging Omicron sublineages.


Asunto(s)
COVID-19 , Hepatitis D , Animales , Cricetinae , Infección Irruptiva , Reinfección , Reacciones Cruzadas , Anticuerpos Neutralizantes , Anticuerpos Antivirales
6.
EMBO Rep ; 24(12): e57224, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37818801

RESUMEN

The antiviral restriction factor, tetherin, blocks the release of several different families of enveloped viruses, including the Coronaviridae. Tetherin is an interferon-induced protein that forms parallel homodimers between the host cell and viral particles, linking viruses to the surface of infected cells and inhibiting their release. We demonstrate that SARS-CoV-2 infection causes tetherin downregulation and that tetherin depletion from cells enhances SARS-CoV-2 viral titres. We investigate the potential viral proteins involved in abrogating tetherin function and find that SARS-CoV-2 ORF3a reduces tetherin localisation within biosynthetic organelles where Coronaviruses bud, and increases tetherin localisation to late endocytic organelles via reduced retrograde recycling. We also find that expression of Spike protein causes a reduction in cellular tetherin levels. Our results confirm that tetherin acts as a host restriction factor for SARS-CoV-2 and highlight the multiple distinct mechanisms by which SARS-CoV-2 subverts tetherin function.


Asunto(s)
Antígeno 2 del Estroma de la Médula Ósea , COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Liberación del Virus , Humanos , Antígeno 2 del Estroma de la Médula Ósea/antagonistas & inhibidores , Antígeno 2 del Estroma de la Médula Ósea/metabolismo , COVID-19/virología , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/genética
7.
Nat Commun ; 14(1): 6136, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816720

RESUMEN

Chickens genetically resistant to avian influenza could prevent future outbreaks. In chickens, influenza A virus (IAV) relies on host protein ANP32A. Here we use CRISPR/Cas9 to generate homozygous gene edited (GE) chickens containing two ANP32A amino acid substitutions that prevent viral polymerase interaction. After IAV challenge, 9/10 edited chickens remain uninfected. Challenge with a higher dose, however, led to breakthrough infections. Breakthrough IAV virus contained IAV polymerase gene mutations that conferred adaptation to the edited chicken ANP32A. Unexpectedly, this virus also replicated in chicken embryos edited to remove the entire ANP32A gene and instead co-opted alternative ANP32 protein family members, chicken ANP32B and ANP32E. Additional genome editing for removal of ANP32B and ANP32E eliminated all viral growth in chicken cells. Our data illustrate a first proof of concept step to generate IAV-resistant chickens and show that multiple genetic modifications will be required to curtail viral escape.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Embrión de Pollo , Animales , Gripe Aviar/genética , Edición Génica , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Pollos/genética , Virus de la Influenza A/genética , Virus de la Influenza A/metabolismo
8.
J R Soc Interface ; 20(205): 20230187, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553993

RESUMEN

We use viral kinetic models fitted to viral load data from in vitro studies to explain why the SARS-CoV-2 Omicron variant replicates faster than the Delta variant in nasal cells, but slower than Delta in lung cells, which could explain Omicron's higher transmission potential and lower severity. We find that in both nasal and lung cells, viral infectivity is higher for Omicron but the virus production rate is higher for Delta, with an estimated approximately 200-fold increase in infectivity and 100-fold decrease in virus production when comparing Omicron with Delta in nasal cells. However, the differences are unequal between cell types, and ultimately lead to the basic reproduction number and growth rate being higher for Omicron in nasal cells, and higher for Delta in lung cells. In nasal cells, Omicron alone can enter via a TMPRSS2-independent pathway, but it is primarily increased efficiency of TMPRSS2-dependent entry which accounts for Omicron's increased activity. This work paves the way for using within-host mathematical models to understand the transmission potential and severity of future variants.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Número Básico de Reproducción , Cinética
9.
Mol Ther Nucleic Acids ; 31: 29-42, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36589712

RESUMEN

To be effective, RNA vaccines require both in situ translation and the induction of an immune response to recruit cells to the site of immunization. These factors can pull in opposite directions with the inflammation reducing expression of the vaccine antigen. We investigated how formulation affects the acute systemic cytokine response to a self-amplifying RNA (saRNA) vaccine. We compared a cationic polymer (pABOL), a lipid emulsion (nanostructured lipid carrier, NLC), and three lipid nanoparticles (LNP). After immunization, we measured serum cytokines and compared the response to induced antibodies against influenza virus. Formulations that induced a greater cytokine response induced a greater antibody response, with a significant correlation between IP-10, MCP-1, KC, and antigen-specific antibody titers. We then investigated how innate immune sensing and signaling impacted the adaptive immune response to vaccination with LNP-formulated saRNA. Mice that lacked MAVS and are unable to signal through RIG-I-like receptors had an altered cytokine response to saRNA vaccination and had significantly greater antibody responses than wild-type mice. This indicates that the inflammation induced by formulated saRNA vaccines is not solely deleterious in the induction of antibody responses and that targeting specific aspects of RNA vaccine sensing might improve the quality of the response.

10.
Clin Infect Dis ; 76(4): 658-666, 2023 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35913410

RESUMEN

BACKGROUND: We explore severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody lateral flow immunoassay (LFIA) performance under field conditions compared to laboratory-based electrochemiluminescence immunoassay (ECLIA) and live virus neutralization. METHODS: In July 2021, 3758 participants performed, at home, a self-administered Fortress LFIA on finger-prick blood, reported and submitted a photograph of the result, and provided a self-collected capillary blood sample for assessment of immunoglobulin G (IgG) antibodies using the Roche Elecsys® Anti-SARS-CoV-2 ECLIA. We compared the self-reported LFIA result to the quantitative ECLIA and checked the reading of the LFIA result with an automated image analysis (ALFA). In a subsample of 250 participants, we compared the results to live virus neutralization. RESULTS: Almost all participants (3593/3758, 95.6%) had been vaccinated or reported prior infection. Overall, 2777/3758 (73.9%) were positive on self-reported LFIA, 2811/3457 (81.3%) positive by LFIA when ALFA-reported, and 3622/3758 (96.4%) positive on ECLIA (using the manufacturer reference standard threshold for positivity of 0.8 U mL-1). Live virus neutralization was detected in 169 of 250 randomly selected samples (67.6%); 133/169 were positive with self-reported LFIA (sensitivity 78.7%; 95% confidence interval [CI]: 71.8, 84.6), 142/155 (91.6%; 95% CI: 86.1, 95.5) with ALFA, and 169 (100%; 95% CI: 97.8, 100.0) with ECLIA. There were 81 samples with no detectable virus neutralization; 47/81 were negative with self-reported LFIA (specificity 58.0%; 95% CI: 46.5, 68.9), 34/75 (45.3%; 95% CI: 33.8, 57.3) with ALFA, and 0/81 (0%; 95% CI: 0, 4.5) with ECLIA. CONCLUSIONS: Self-administered LFIA is less sensitive than a quantitative antibody test, but the positivity in LFIA correlates better than the quantitative ECLIA with virus neutralization.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Autoevaluación , Sensibilidad y Especificidad , Anticuerpos Antivirales , Inmunoensayo/métodos
11.
ACS Cent Sci ; 8(9): 1238-1257, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36188342

RESUMEN

Infectious diseases continue to pose a substantial burden on global populations, requiring innovative broad-spectrum prophylactic and treatment alternatives. Here, we have designed modular synthetic polymer nanoparticles that mimic functional components of host cell membranes, yielding multivalent nanomimics that act by directly binding to varied pathogens. Nanomimic blood circulation time was prolonged by reformulating polymer-lipid hybrids. Femtomolar concentrations of the polymer nanomimics were sufficient to inhibit herpes simplex virus type 2 (HSV-2) entry into epithelial cells, while higher doses were needed against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Given their observed virustatic mode of action, the nanomimics were also tested with malaria parasite blood-stage merozoites, which lose their invasive capacity after a few minutes. Efficient inhibition of merozoite invasion of red blood cells was demonstrated both in vitro and in vivo using a preclinical rodent malaria model. We envision these nanomimics forming an adaptable platform for developing pathogen entry inhibitors and as immunomodulators, wherein nanomimic-inhibited pathogens can be secondarily targeted to sites of immune recognition.

12.
Eur J Immunol ; 52(11): 1768-1775, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36106692

RESUMEN

SARS-CoV-2 is a newly emerged coronavirus, causing the global pandemic of respiratory coronavirus disease (COVID-19). The type I interferon (IFN) pathway is of particular importance for anti-viral defense and recent studies identified that type I IFNs drive early inflammatory responses to SARS-CoV-2. Here, we use a mouse model of SARS-CoV-2 infection, facilitating viral entry by intranasal recombinant Adeno-Associated Virus (rAAV) transduction of hACE2 in wildtype (WT) and type I IFN receptor-1 deficient (Ifnar1-/- ) mice, to study the role of type I IFN signalling and innate immune responses during SARS-CoV-2 infection. Our data show that type I IFN signalling is essential for inducing anti-viral effector responses to SARS-CoV-2, control of virus replication, and to prevent enhanced disease. Furthermore, hACE2-Ifnar1-/- mice had increased gene expression of the chemokine Cxcl1 and airway infiltration of neutrophils as well as reduced and delayed production of monocyte-recruiting chemokine CCL2. hACE2-Ifnar1-/- mice showed altered recruitment of inflammatory myeloid cells to the lung upon SARS-CoV-2 infection, with a shift from Ly6C+ to Ly6C- expressing cells. Together, our findings suggest that type I IFN signalling deficiency results in a dysregulated innate immune response to SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Inmunidad Innata , Receptor de Interferón alfa y beta , Animales , Ratones , COVID-19/inmunología , Interferón Tipo I , Pandemias , Receptor de Interferón alfa y beta/genética , SARS-CoV-2
13.
Vaccine ; 40(20): 2848-2855, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35396165

RESUMEN

Vaccines for SARS-CoV-2 have been hugely successful in alleviating hospitalization and deaths caused by the newly emerged coronavirus that is the cause of COVID. However, although the parentally administered vaccines are very effective at reducing severe disease, they do not induce sterilizing immunity. As the virus continues to circulate around the globe, it is still not clear how long protection will last, nor whether variants will emerge that escape vaccine immunity. Animal models can be useful to complement studies of antigenicity of novel variants and inform decision making about the need for vaccine updates. The Syrian golden hamster is the preferred small animal model for SARS-CoV-2 infection. Since virus is efficiently transmitted between hamsters, we developed a transmission challenge model that presents a more natural dose and route of infection than the intranasal challenge usually employed. Our studies demonstrate that an saRNA vaccine based on the earliest Wuhan-like virus spike sequence induced neutralizing antibodies in sera of immunized hamsters at similar titres to those in human convalescent sera or vaccine recipients. The saRNA vaccine was equally effective at abrogating clinical signs in animals who acquired through exposure to cagemates infected either with a virus isolated in summer 2020 or with a representative Alpha (B.1.1.7) variant isolated in December 2020. The vaccine also reduced shedding of infectious virus from the nose, further reinforcing its likely effectiveness at reducing onwards transmission. This model can be extended to test the effectiveness of vaccination in blocking infections with and transmission of novel variants as they emerge.


Asunto(s)
COVID-19 , Vacunas Virales , Animales , COVID-19/prevención & control , COVID-19/terapia , Vacunas contra la COVID-19 , Cricetinae , Humanos , Inmunización Pasiva , SARS-CoV-2 , Vacunas Sintéticas , Vacunas de ARNm , Sueroterapia para COVID-19
14.
Nat Commun ; 13(1): 1609, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35338134

RESUMEN

Ultrastructural studies of SARS-CoV-2 infected cells are crucial to better understand the mechanisms of viral entry and budding within host cells. Here, we examined human airway epithelium infected with three different isolates of SARS-CoV-2 including the B.1.1.7 variant by transmission electron microscopy and tomography. For all isolates, the virus infected ciliated but not goblet epithelial cells. Key SARS-CoV-2 entry molecules, ACE2 and TMPRSS2, were found to be localised to the plasma membrane including microvilli but excluded from cilia. Consistently, extracellular virions were seen associated with microvilli and the apical plasma membrane but rarely with ciliary membranes. Profiles indicative of viral fusion where tomography showed that the viral membrane was continuous with the apical plasma membrane and the nucleocapsids diluted, compared with unfused virus, demonstrate that the plasma membrane is one site of entry where direct fusion releasing the nucleoprotein-encapsidated genome occurs. Intact intracellular virions were found within ciliated cells in compartments with a single membrane bearing S glycoprotein. Tomography showed concentration of nucleocapsids round the periphery of profiles strongly suggestive of viral budding into these compartments and this may explain how virions gain their S glycoprotein containing envelope.


Asunto(s)
COVID-19 , SARS-CoV-2 , Epitelio/metabolismo , Humanos , Peptidil-Dipeptidasa A/metabolismo
15.
Cell Rep ; 38(6): 110344, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35093235

RESUMEN

SARS-CoV-2 has a broad mammalian species tropism infecting humans, cats, dogs, and farmed mink. Since the start of the 2019 pandemic, several reverse zoonotic outbreaks of SARS-CoV-2 have occurred in mink, one of which reinfected humans and caused a cluster of infections in Denmark. Here we investigate the molecular basis of mink and ferret adaptation and demonstrate the spike mutations Y453F, F486L, and N501T all specifically adapt SARS-CoV-2 to use mustelid ACE2. Furthermore, we risk assess these mutations and conclude mink-adapted viruses are unlikely to pose an increased threat to humans, as Y453F attenuates the virus replication in human cells and all three mink adaptations have minimal antigenic impact. Finally, we show that certain SARS-CoV-2 variants emerging from circulation in humans may naturally have a greater propensity to infect mustelid hosts and therefore these species should continue to be surveyed for reverse zoonotic infections.


Asunto(s)
Adaptación Biológica/inmunología , SARS-CoV-2/genética , Zoonosis Virales/genética , Animales , COVID-19 , Hurones/inmunología , Aptitud Genética/genética , Humanos , Visón/inmunología , Mutación , Pandemias , Sistema Respiratorio/virología , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/inmunología
16.
bioRxiv ; 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33442692

RESUMEN

The antiviral restriction factor, tetherin, blocks the release of several different families of enveloped viruses, including the Coronaviridae. Tetherin is an interferon-induced protein that forms parallel homodimers between the host cell and viral particles, linking viruses to the surface of infected cells and inhibiting their release. We demonstrated that SARS-CoV-2 infection causes tetherin downregulation, and that tetherin depletion from cells enhances SARS-CoV-2 viral titres. We investigated the potential viral proteins involved in abrogating tetherin function and found that SARS-CoV-2 ORF3a reduces tetherin localisation within biosynthetic organelles via reduced retrograde recycling and increases tetherin localisation to late endocytic organelles. By removing tetherin from the Coronavirus budding compartments, ORF3a enhances virus release. We also found expression of Spike protein caused a reduction in cellular tetherin levels. Our results confirm that tetherin acts as a host restriction factor for SARS-CoV-2 and highlight the multiple distinct mechanisms by which SARS-CoV-2 subverts tetherin function.

17.
Water Res ; 205: 117718, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34619607

RESUMEN

SARS-CoV-2 transmission remains a global problem which exerts a significant direct cost to public health. Additionally, other aspects of physical and mental health can be affected by limited access to social and exercise venues as a result of lockdowns in the community or personal reluctance due to safety concerns. Swimming pools reopened in the UK on April 12th 2021, but the effect of swimming pool water on inactivation of SARS-CoV-2 has not yet been directly demonstrated. Here we demonstrate that chlorinated water which adheres to UK swimming pool guidelines is sufficient to reduce SARS-CoV-2 infectious titre by at least 3 orders of magnitude.


Asunto(s)
COVID-19 , Desinfectantes , Piscinas , Cloro , Control de Enfermedades Transmisibles , Humanos , SARS-CoV-2 , Natación , Agua
18.
Lancet Reg Health Eur ; 4: 100098, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33969335

RESUMEN

BACKGROUND: The time-concentrated nature of the first wave of the COVID-19 epidemic in England in March and April 2020 provides a natural experiment to measure changes in antibody positivity at the population level before onset of the second wave and initiation of the vaccination programme. METHODS: Three cross-sectional national surveys with non-overlapping random samples of the population in England undertaken between late June and September 2020 (REACT-2 study). 365,104 adults completed questionnaires and self-administered lateral flow immunoassay (LFIA) tests for IgG against SARS-CoV-2. FINDINGS: Overall, 17,576 people had detectable antibodies, a prevalence of 4.9% (95% confidence intervals 4.9, 5.0) when adjusted for test characteristics and weighted to the adult population of England. The prevalence declined from 6.0% (5.8, 6.1), to 4.8% (4.7, 5.0) and 4.4% (4.3, 4.5), over the three rounds of the study a difference of -26.5% (-29.0, -23.8). The highest prevalence and smallest overall decline in positivity was in the youngest age group (18-24 years) at -14.9% (-21.6, -8.1), and lowest prevalence and largest decline in the oldest group (>74 years) at -39.0% (-50.8, -27.2). The decline from June to September 2020 was largest in those who did not report a history of COVID-19 at -64.0% (-75.6, -52.3), compared to -22.3% (-27.0, -17.7) in those with SARS-CoV-2 infection confirmed on PCR. INTERPRETATION: A large proportion of the population remained susceptible to SARS-CoV-2 infection in England based on naturally acquired immunity from the first wave. Widespread vaccination is needed to confer immunity and control the epidemic at population level. FUNDING: This work was funded by the Department of Health and Social Care in England.

19.
Nat Microbiol ; 6(7): 899-909, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33907312

RESUMEN

SARS-CoV-2 entry requires sequential cleavage of the spike glycoprotein at the S1/S2 and the S2' cleavage sites to mediate membrane fusion. SARS-CoV-2 has a polybasic insertion (PRRAR) at the S1/S2 cleavage site that can be cleaved by furin. Using lentiviral pseudotypes and a cell-culture-adapted SARS-CoV-2 virus with an S1/S2 deletion, we show that the polybasic insertion endows SARS-CoV-2 with a selective advantage in lung cells and primary human airway epithelial cells, but impairs replication in Vero E6, a cell line used for passaging SARS-CoV-2. Using engineered spike variants and live virus competition assays and by measuring growth kinetics, we find that the selective advantage in lung and primary human airway epithelial cells depends on the expression of the cell surface protease TMPRSS2, which enables endosome-independent virus entry by a route that avoids antiviral IFITM proteins. SARS-CoV-2 virus lacking the S1/S2 furin cleavage site was shed to lower titres from infected ferrets and was not transmitted to cohoused sentinel animals, unlike wild-type virus. Analysis of 100,000 SARS-CoV-2 sequences derived from patients and 24 human postmortem tissues showed low frequencies of naturally occurring mutants that harbour deletions at the polybasic site. Taken together, our findings reveal that the furin cleavage site is an important determinant of SARS-CoV-2 transmission.


Asunto(s)
COVID-19/transmisión , Furina/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , COVID-19/virología , Catepsinas/metabolismo , Chlorocebus aethiops , Endosomas/metabolismo , Células Epiteliales , Hurones , Humanos , Evasión Inmune , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/metabolismo , Sistema Respiratorio/citología , Sistema Respiratorio/virología , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Células Vero , Empaquetamiento del Genoma Viral , Internalización del Virus , Replicación Viral , Esparcimiento de Virus
20.
BMJ ; 372: n423, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33653694

RESUMEN

OBJECTIVE: To evaluate the performance of new lateral flow immunoassays (LFIAs) suitable for use in a national coronavirus disease 2019 (covid-19) seroprevalence programme (real time assessment of community transmission 2-React 2). DESIGN: Diagnostic accuracy study. SETTING: Laboratory analyses were performed in the United Kingdom at Imperial College, London and university facilities in London. Research clinics for finger prick sampling were run in two affiliated NHS trusts. PARTICIPANTS: Sensitivity analyses were performed on sera stored from 320 previous participants in the React 2 programme with confirmed previous severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Specificity analyses were performed on 1000 prepandemic serum samples. 100 new participants with confirmed previous SARS-CoV-2 infection attended study clinics for finger prick testing. INTERVENTIONS: Laboratory sensitivity and specificity analyses were performed for seven LFIAs on a minimum of 200 serum samples from participants with confirmed SARS-CoV-2 infection and 500 prepandemic serum samples, respectively. Three LFIAs were found to have a laboratory sensitivity superior to the finger prick sensitivity of the LFIA currently used in React 2 seroprevalence studies (84%). These LFIAs were then further evaluated through finger prick testing on participants with confirmed previous SARS-CoV-2 infection: two LFIAs (Surescreen, Panbio) were evaluated in clinics in June-July 2020 and the third LFIA (AbC-19) in September 2020. A spike protein enzyme linked immunoassay and hybrid double antigen binding assay were used as laboratory reference standards. MAIN OUTCOME MEASURES: The accuracy of LFIAs in detecting immunoglobulin G (IgG) antibodies to SARS-CoV-2 compared with two reference standards. RESULTS: The sensitivity and specificity of seven new LFIAs that were analysed using sera varied from 69% to 100%, and from 98.6% to 100%, respectively (compared with the two reference standards). Sensitivity on finger prick testing was 77% (95% confidence interval 61.4% to 88.2%) for Panbio, 86% (72.7% to 94.8%) for Surescreen, and 69% (53.8% to 81.3%) for AbC-19 compared with the reference standards. Sensitivity for sera from matched clinical samples performed on AbC-19 was significantly higher with serum than finger prick at 92% (80.0% to 97.7%, P=0.01). Antibody titres varied considerably among cohorts. The numbers of positive samples identified by finger prick in the lowest antibody titre quarter varied among LFIAs. CONCLUSIONS: One new LFIA was identified with clinical performance suitable for potential inclusion in seroprevalence studies. However, none of the LFIAs tested had clearly superior performance to the LFIA currently used in React 2 seroprevalence surveys, and none showed sufficient sensitivity and specificity to be considered for routine clinical use.


Asunto(s)
Prueba Serológica para COVID-19 , COVID-19/diagnóstico , Inmunoensayo , SARS-CoV-2/aislamiento & purificación , Adulto , Anticuerpos Antivirales/sangre , COVID-19/sangre , COVID-19/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología , Sensibilidad y Especificidad , Estudios Seroepidemiológicos , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...