Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 58
1.
JACS Au ; 4(4): 1623-1631, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38665663

Reported here is the design and synthesis of a novel class of extended quinolizinium-fused corannulene derivatives with curved geometry. These intriguing molecules were synthesized through a rationally designed synthetic strategy, utilizing double Skraup-Doebner-Von Miller quinoline synthesis and a rhodium-catalyzed C-H activation/annulation (CHAA) as the key steps. Single-crystal X-ray analysis revealed a bowl depth of 1.28-1.50 Å and a unique "windmill-like" shape packing of 12a(2PF6-) due to the curvature and incorporation of two aminium ions. All of the newly reported curved salts exhibit green to orange fluorescence with enhanced quantum yields (Φf = 9-13%) and improved dispersibility compared to the pristine corannulene (Φf = 1%). The reduced optical energy gap and lower energy frontier orbital found by doping extended corannulene systems with nitrogen cations was investigated by UV-vis, fluorescence, and theoretical calculations. Electrochemical measurements reveal a greater electron-accepting behavior compared with that of their pyridine analogues. The successful synthesis, isolation, and evaluation of these curved salts provide a fresh perspective and opportunity for the design of cationic nitrogen-doped curved aromatic hydrocarbon-based materials.

2.
Chimia (Aarau) ; 77(5): 339-345, 2023 May 31.
Article En | MEDLINE | ID: mdl-38047830

The frustrations of precipitation, fouling and blockages of liquid-based flow reactors is familiar to all researchers that have worked with continuous flow equipment. There have been many innovative solutions to try and circumvent this issue. This short review will highlight the emerging technique of mechanochemistry and reactive extrusion as a continuous process that can directly work on solid (and liquid) materials and elicit chemical transformations.

3.
Science ; 381(6655): 302-306, 2023 Jul 21.
Article En | MEDLINE | ID: mdl-37471551

All fluorochemicals-including elemental fluorine and nucleophilic, electrophilic, and radical fluorinating reagents-are prepared from hydrogen fluoride (HF). This highly toxic and corrosive gas is produced by the reaction of acid-grade fluorspar (>97% CaF2) with sulfuric acid under harsh conditions. The use of fluorspar to produce fluorochemicals via a process that bypasses HF is highly desirable but remains an unsolved problem because of the prohibitive insolubility of CaF2. Inspired by calcium phosphate biomineralization, we herein disclose a protocol of treating acid-grade fluorspar with dipotassium hydrogen phosphate (K2HPO4) under mechanochemical conditions. The process affords a solid composed of crystalline K3(HPO4)F and K2-xCay(PO3F)a(PO4)b, which is found suitable for forging sulfur-fluorine and carbon-fluorine bonds.

7.
ACS Catal ; 12(21): 13681-13689, 2022 Nov 04.
Article En | MEDLINE | ID: mdl-36366760

The cross-electrophile coupling of either twisted-amides or heteroaryl halides with alkyl halides, enabled by ball-milling, is herein described. The operationally simple nickel-catalyzed process has no requirement for inert atmosphere or dry solvents and delivers the corresponding acylated or heteroarylated products across a broad range of substrates. Key to negating the necessity of inert reaction conditions is the mechanical activation of the raw metal terminal reductant: manganese in the case of twisted amides and zinc for heteroaryl halides.

8.
J Org Chem ; 87(18): 12297-12305, 2022 09 16.
Article En | MEDLINE | ID: mdl-36047721

A flow chemistry process for the generation and use of acylketene precursors through extrusion of nitrogen gas is reported. Key to the development of a suitable continuous protocol is the balance of reaction concentration against pressure in the flow reactor. The resulting process enables access to intercepted acylketene scaffolds using volatile amine nucleophiles and has been demonstrated on the gram scale. Thermal gravimetric analysis was used to guide the temperature set point of the reactor coils for a variety of acyl ketene precursors. The simultaneous generation and reaction of two reactive intermediates (both derived from nitrogen extrusion) is demonstrated.


Amines , Nitrogen , Temperature
9.
Angew Chem Int Ed Engl ; : e202210508, 2022 Sep 09.
Article En | MEDLINE | ID: mdl-36082766

The nickel catalyzed Suzuki-Miyaura-type coupling of aryl sulfamates and boronic acid derivatives enabled by temperature-controlled mechanochemistry via the development of a programmable PID-controlled jar heater is reported. This base-metal-catalyzed, solvent-free, all-under-air protocol was also scaled 200-fold using twin-screw extrusion technology affording decagram quantities of material.

10.
Angew Chem Int Ed Engl ; 61(47): e202209564, 2022 11 21.
Article En | MEDLINE | ID: mdl-36111496

The versatility of olefin metathesis is evident from its successful applications ranging from natural product synthesis to the valorization of renewable feedstocks. On the other side, flow chemistry has recently gained particular interest among the synthetic community, offering valuable alternatives to classic batch chemistry and paving the way to the development of new transformations. The application of continuous-flow methods to olefin metathesis represents one of the most promising evolutions in the field at the interface of industrially relevant synthesis and reactor engineering, significantly improving some of the typical problems such as undesired self-reactions and ethylene-mediated catalyst deactivation. This Minireview aims to provide a brief survey covering the major aspects of those techniques which we hope may be of interest for the chemical community as well as those interested in catalysis, continuous processing, enabling technologies and reactor design.


Biological Products , Ruthenium , Alkenes , Catalysis
11.
Org Lett ; 24(21): 3890-3895, 2022 Jun 03.
Article En | MEDLINE | ID: mdl-35604008

Herein, we report a new electrochemical method for alkoxy radical generation from alcohols using a proton-coupled electron transfer (PCET) approach, showcased via the deconstructive functionalization of cycloalkanols. The electrochemical method is applicable across a diverse array of substituted cycloalkanols, accessing a broad range of synthetically useful distally functionalized ketones. The orthogonal derivatization of the products has been demonstrated through chemoselective transformations, and the electrochemical process has been performed on a gram scale in continuous single-pass flow.

12.
Chem Soc Rev ; 51(11): 4243-4260, 2022 Jun 06.
Article En | MEDLINE | ID: mdl-35506866

Rapid and wide-ranging developments have established mechanochemistry as a powerful avenue in sustainable organic synthesis. This is primarily due to unique opportunities which have been offered in solvent-free - or highly solvent-minimised - reaction systems. Nevertheless, despite elegant advances in ball-milling technology, limitations in scale-up still remain. This tutorial review covers the first reports into the translation from "batch-mode" ball-milling to "flow-mode" reactive extrusion, using twin-screw extrusion.


Chemistry Techniques, Synthetic , Solvents
13.
ChemSusChem ; 15(2): e202102157, 2022 Jan 21.
Article En | MEDLINE | ID: mdl-34767693

Ball mills input energy to samples by pulverising the contents of the jar. Each impact on the sample or wall of the jar results in an instantaneous transmission of energy in the form of a temperature and pressure increase (volume reduction). Conversely, enantioselective organocatalytic reactions proceed through perceived delicate and well-organised transition states. Does there exist a dichotomy in the idea of enantioselective mechanochemical organocatalysis? This Review provides a survey of the literature reporting the combination of organocatalytic reactions with mechanochemical ball milling conditions. Where possible, direct comparisons of stirred in solution, stirred neat and ball milled processes are drawn with a particular focus on control of stereoselectivity.


Temperature
14.
Angew Chem Int Ed Engl ; 60(43): 23128-23133, 2021 10 18.
Article En | MEDLINE | ID: mdl-34405513

Efforts to generate organomanganese reagents under ball-milling conditions have led to the serendipitous discovery that manganese metal can mediate the reductive dimerization of arylidene malonates. The newly uncovered process has been optimized and its mechanism explored using CV measurements, radical trapping experiments, EPR spectroscopy, and solution control reactions. This unique reactivity can also be translated to solution whereupon pre-milling of the manganese is required.

15.
Angew Chem Int Ed Engl ; 60(40): 21868-21874, 2021 09 27.
Article En | MEDLINE | ID: mdl-34357668

The direct mechanochemical amidation of esters by ball milling is described. The operationally simple procedure requires an ester, an amine, and substoichiometric KOtBu and was used to prepare a large and diverse library of 78 amide structures with modest to excellent efficiency. Heteroaromatic and heterocyclic components are specifically shown to be amenable to this mechanochemical protocol. This direct synthesis platform has been applied to the synthesis of active pharmaceutical ingredients (APIs) and agrochemicals as well as the gram-scale synthesis of an active pharmaceutical, all in the absence of a reaction solvent.

16.
Org Lett ; 23(16): 6337-6341, 2021 08 20.
Article En | MEDLINE | ID: mdl-34342468

The nickel-catalyzed cross-electrophile coupling of aryl halides and alkyl halides enabled by ball-milling is herein described. Under a mechanochemical manifold, the reductive C-C bond formation was achieved in the absence of bulk solvent and air/moisture sensitive setups, in reaction times of 2 h. The mechanical action provided by ball milling permits the use of a range of zinc sources to turnover the nickel catalytic cycle, enabling the synthesis of 28 cross-electrophile coupled products.

17.
Chem Commun (Camb) ; 57(60): 7406-7409, 2021 Jul 27.
Article En | MEDLINE | ID: mdl-34231584

A new and efficient strategy for the rapid formation of novel fluorinated tetrahydropyridazines and dihydrooxazines has been developed by fluorocyclisation of ß,γ-unsaturated hydrazones and oximes with the fluoroiodane reagent. Mechanochemical synthesis delivered fluorinated tetrahydropyridazines in similar excellent yields to conventional solution synthesis, whereas fluorinated dihydrooxazines were prepared in much better yields by ball-milling.

18.
J Org Chem ; 86(20): 14095-14101, 2021 10 15.
Article En | MEDLINE | ID: mdl-34256566

The mechanochemical synthesis of 2,4,5,6-tetra(9H-carbazol-9-yl)isophthalonitrile and related organic fluorophores/photocatalysts via a solvent-minimized four-fold SNAr pathway is herein described. Employing sodium tert-butoxide as base, and negating the need for any air/moisture-sensitive reaction set-ups, a selection of organic dyes was synthesized in just 1 h using this ball-milling technique. Furthermore, the transformation was then showcased on a multigram scale.


Solvents , Ionophores
19.
Angew Chem Int Ed Engl ; 60(36): 19685-19690, 2021 09 01.
Article En | MEDLINE | ID: mdl-34184375

The first continuous flow Z-selective olefin metathesis process is reported. Key to realizing this process was the adequate choice of stereoselective catalysts combined with the design of an appropriate continuous reactor setup. The designed continuous process permits various self-, cross- and macro-ring-closing-metathesis reactions, delivering products in high selectivity and short residence times. This technique is exemplified by direct application to the preparation of a range of pheromones and macrocyclic odorant molecules and culminates in a telescoped Z-selective cross-metathesis/ Dieckmann cyclisation sequence to access (Z)-Civetone, incorporating a serial array of continually stirred tank reactors.

20.
Chemistry ; 27(38): 9721-9726, 2021 Jul 07.
Article En | MEDLINE | ID: mdl-33792102

Recent research endeavors have established that the mechanochemical activation of piezoelectric materials can open new avenues in redox chemistry. Impact forces, such as those imparted by a ball mill, have been shown to transform piezoelectric materials such as barium titanate (BaTiO3 ) into a highly polarized state, which can then donate an electron to a suitable oxidant and receive an electron from a suitable reductant, mimicking established photoredox catalytic cycles. Proof-of-concept studies have elucidated that mechanoredox chemistry holds great potential in sustainable and efficient radical-based synthesis.


Catalysis
...