Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
EMBO Rep ; 23(6): e53608, 2022 06 07.
Article En | MEDLINE | ID: mdl-35437868

Elevated expression of the X-linked inhibitor of apoptosis protein (XIAP) has been frequently reported in malignant melanoma suggesting that XIAP renders apoptosis resistance and thereby supports melanoma progression. Independent of its anti-apoptotic function, XIAP mediates cellular inflammatory signalling and promotes immunity against bacterial infection. The pro-inflammatory function of XIAP has not yet been considered in cancer. By providing detailed in vitro analyses, utilising two independent mouse melanoma models and including human melanoma samples, we show here that XIAP is an important mediator of melanoma neutrophil infiltration. Neutrophils represent a major driver of melanoma progression and are increasingly considered as a valuable therapeutic target in solid cancer. Our data reveal that XIAP ubiquitylates RIPK2, involve TAB1/RIPK2 complex and induce the transcriptional up-regulation and secretion of chemokines such as IL8, that are responsible for intra-tumour neutrophil accumulation. Alteration of the XIAP-RIPK2-TAB1 inflammatory axis or the depletion of neutrophils in mice reduced melanoma growth. Our data shed new light on how XIAP contributes to tumour growth and provides important insights for novel XIAP targeting strategies in cancer.


Inhibitor of Apoptosis Proteins , Melanoma , Neutrophil Infiltration , Skin Neoplasms , X-Linked Inhibitor of Apoptosis Protein , Adaptor Proteins, Signal Transducing/immunology , Animals , Apoptosis/genetics , Apoptosis/immunology , Disease Models, Animal , Humans , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/immunology , Interleukin-8/biosynthesis , Melanoma/genetics , Melanoma/immunology , Mice , Neutrophil Infiltration/genetics , Neutrophil Infiltration/immunology , Receptor-Interacting Protein Serine-Threonine Kinase 2/immunology , Skin Neoplasms/genetics , Skin Neoplasms/immunology , X-Linked Inhibitor of Apoptosis Protein/genetics , X-Linked Inhibitor of Apoptosis Protein/immunology , X-Linked Inhibitor of Apoptosis Protein/metabolism
2.
Cell Oncol (Dordr) ; 42(3): 319-329, 2019 Jun.
Article En | MEDLINE | ID: mdl-30778852

BACKGROUND: The X-linked inhibitor of apoptosis (XIAP) is a potent cellular inhibitor of apoptosis, based on its unique capability to bind and to inhibit caspases. However, XIAP is also involved in a number of additional cellular activities independent of its caspase inhibitory function. The aim of this study was to investigate whether modulation of XIAP expression affects apoptosis-independent functions of XIAP in melanoma cells, restores their sensitivity to apoptosis and/or affects their invasive and metastatic capacities. METHODS: XIAP protein levels were analyzed by immunohistochemical staining of human tissues and by Western blotting of melanoma cell lysates. The effects of pharmacological inhibition or of XIAP down-regulation were investigated using ex-vivo and transwell invasion assays. The biological effects of XIAP down-regulation on melanoma cells were analyzed in vitro using BrdU/PI, nucleosome quantification, adhesion and migration assays. In addition, new XIAP binding partners were identified by co-immunoprecipitation followed by mass spectrometry. RESULTS: Here we found that the expression of XIAP is increased in metastatic melanomas and in invasive melanoma-derived cell lines. We also found that the bivalent IAP antagonist birinapant significantly reduced the invasive capability of melanoma cells. This reduction could be reproduced by downregulating XIAP in melanoma cells. Furthermore, we found that the migration of melanoma cells and the formation of focal adhesions at cellular borders on fibronectin-coated surfaces were significantly reduced upon XIAP knockdown. This reduction may depend on an altered vimentin-XIAP association, since we identified vimentin as a new binding partner of XIAP. As a corollary of these molecular alterations, we found that XIAP down-regulation in melanoma cells led to a significant decrease in invasion of dermal skin equivalents. CONCLUSION: From our data we conclude that XIAP acts as a multifunctional pro-metastatic protein in skin melanomas and, as a consequence, that XIAP may serve as a therapeutic target for these melanomas.


Melanoma/metabolism , Vimentin/metabolism , X-Linked Inhibitor of Apoptosis Protein/metabolism , Apoptosis/drug effects , Caspases/metabolism , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Dipeptides/pharmacology , Humans , Indoles/pharmacology , Inhibitor of Apoptosis Proteins/antagonists & inhibitors , Inhibitor of Apoptosis Proteins/metabolism , Melanoma/genetics , Melanoma/pathology , Neoplasm Invasiveness , Protein Binding , X-Linked Inhibitor of Apoptosis Protein/genetics
...