Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 139
1.
EJNMMI Phys ; 11(1): 41, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722528

BACKGROUND: A new, alternative option for patients with recurrent glioblastoma is targeted alpha therapy (TAT), in the form of a local administration of substance P (neurokinin type 1 receptor ligand, NK-1) labelled with 225Ac. The purpose of the study was to confirm the feasibility of quantitative SPECT imaging of 225Ac, in a model reproducing specific conditions of TAT. In particular, to present the SPECT calibration methodology used, as well as the results of validation measurements and their accuracy. Additionally, to discuss the specific problems related to high noise in the presented case. MATERIALS AND METHODS: All SPECT/CT scans were conducted using the Symbia T6 equipped with HE collimators, and acquired with multiple energy windows (three main windows: 440 keV, 218 keV, and 78 keV, with three lower scatter energy windows). A Jaszczak phantom with fillable cylindrical sources of various sizes was used to investigate quantitative SPECT/CT imaging characteristics. The planar sensitivity of the camera, an imaging calibration factor, and recovery coefficients were determined. Additionally, the 3D printed model of the glioblastoma tumour was developed and imaged to evaluate the accuracy of the proposed protocol. RESULTS: Using the imaging calibration factor and recovery coefficients obtained with the Jaszczak phantom, we were able to quantify the activity in a 3D-printed model of a glioblastoma tumour with uncertainty of no more than 10% and satisfying accuracy. CONCLUSIONS: It is feasible to perform quantitative 225Ac SPECT/CT imaging. However, there are still many more challenges that should be considered for further research on this topic (among others: accurate determination of ICF in the case of high background noise, better method of background estimation for recovery coefficient calculations, other methods for scatter correction than the dual-energy window scatter-compensation method used in this study).

2.
Nucl Med Biol ; 132-133: 108909, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38599144

BACKGROUND: Radioligand therapy using alpha emitters has gained more and more prominence in the last decade. Despite continued efforts to identify new appropriate radionuclides, the combination of 225Ac/213Bi remains among the most promising. Bismuth-213 has been employed in clinical trials in combination with appropriate vectors to treat patients with various forms of cancer, such as leukaemia, bladder cancer, neuroendocrine tumours, melanomas, gliomas, or lymphomas. However, the half-life of 213Bi (T½ = 46 min) implies that its availability for clinical use is limited to hospitals possessing a 225Ac/213Bi radionuclide generator, which is still predominantly scarce. We investigated a new Ac/Bi generator system based on using the composite sorbent α-ZrP-PAN (zirconium(IV) phosphate as active component and polyacrylonitrile as matrix). The developed 225Ac/213Bi generator was subjected to long-term testing after its development. The elution profile was determined and the elution yield, the contamination of the eluate with the parent 225Ac and the contamination of the eluate with the column material were monitored over time. RESULTS: The high activity (75 MBq of parent 225Ac) generator with a length of 75 mm and a diameter of 4 mm containing the composite sorbent α-ZrP-PAN with a particle size of 0.8 to 1.0 mm as the stationary phase, eluted with a mixture of 10 mM DTPA in 5 mM nitric acid, provided 213Bi with yields ranging from 77 % to 96 % in 2.8 mL of eluate, with parent 225Ac contamination in the order of 10-3 %, up to twenty days of use. CONCLUSION: All the results of the monitored parameters indicate that the composite sorbent α-ZrP-PAN based separation system for the elution of 213Bi is a very promising and functional solution.

3.
Lancet Oncol ; 25(2): 175-183, 2024 Feb.
Article En | MEDLINE | ID: mdl-38218192

BACKGROUND: Actinium-225 (225Ac) prostate-specific membrane antigen (PSMA) radioligand therapy (RLT) is a novel therapy for metastatic castration-resistant prostate cancer (mCRPC). We aimed to report the safety and antitumour activity of 225Ac-PSMA RLT of mCRPC in a large cohort of patients treated at multiple centres across the world. METHODS: This retrospective study included patients treated at seven centres in Australia, India, Germany, and South Africa. We pooled data of consecutive patients of any age and Eastern Cooperative Oncology Group performance status with histopathologically confirmed adenocarcinoma of the prostate who were treated with one or more cycles of 8 MBq 225Ac-PSMA RLT administered intravenously for mCRPC. Previous lines of mCRPC treatment included taxane-based chemotherapy, androgen-receptor-axis inhibitors, lutetium-177 (177Lu) PSMA RLT, and radium-223 dichloride. The primary outcomes were overall survival and progression-free survival. FINDINGS: Between Jan 1, 2016, and May 31, 2023, 488 men with mCRPC received 1174 cycles of 225Ac-PSMA RLT (median two cycles, IQR 2-4). The mean age of the patients was 68·1 years (SD 8·8), and the median baseline prostate-specific antigen was 169·5 ng/mL (IQR 34·6-519·8). Previous lines of treatment were docetaxel in 324 (66%) patients, cabazitaxel in 103 (21%) patients, abiraterone in 191 (39%) patients, enzalutamide in 188 (39%) patients, 177Lu-PSMA RLT in 154 (32%) patients, and radium-223 dichloride in 18 (4%) patients. The median follow-up duration was 9·0 months (IQR 5·0-17·5). The median overall survival was 15·5 months (95% CI 13·4-18·3) and median progression-free survival was 7·9 months (6·8-8·9). In 347 (71%) of 488 patients, information regarding treatment-induced xerostomia was available, and 236 (68%) of the 347 patients reported xerostomia after the first cycle of 225Ac-PSMA RLT. All patients who received more than seven cycles of 225Ac-PSMA RLT reported xerostomia. Grade 3 or higher anaemia occurred in 64 (13%) of 488 patients, leukopenia in 19 (4%), thrombocytopenia in 32 (7%), and renal toxicity in 22 (5%). No serious adverse events or treatment-related deaths were recorded. INTERPRETATION: 225Ac-PSMA RLT shows a substantial antitumour effect in mCRPC and represents a viable therapy option in patients treated with previous lines of approved agents. Xerostomia is a common side-effect. Severe bone marrow and renal toxicity are less common adverse events. FUNDING: None.


Actinium , Prostatic Neoplasms, Castration-Resistant , Radium , Xerostomia , Aged , Humans , Male , Dipeptides/adverse effects , Prostate-Specific Antigen , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Radioisotopes , Radiopharmaceuticals , Retrospective Studies , Treatment Outcome , Xerostomia/chemically induced , Xerostomia/drug therapy , Middle Aged
4.
BMC Cancer ; 24(1): 146, 2024 Jan 29.
Article En | MEDLINE | ID: mdl-38287346

BACKGROUND: Life expectancy of patients with metastatic castration-resistant prostate cancer (mCRPC) is still limited despite several systemic treatments. Within five years after diagnosis of primary prostate cancer, 10-20% of the patients have mCRPC and curation is not an option. Radionuclide therapy (RNT) targeted against prostate-specific membrane antigen (PSMA) emerged as a new treatment option and showed effective results in patients with mCRPC. Survival benefit after [177Lu]Lu-PSMA RNT has already been demonstrated in several clinical trials. However, [225Ac]Ac-PSMA (225Ac-PSMA) appears to be an even more promising radiopharmaceutical for the treatment of mCRPC. The use of alpha emitting radionuclides offers advantages over beta emitting radionuclides due to the high linear energy transfer effective for killing tumor cells and the limited range to reduce the radiation effects on the healthy tissue. However, these results are based on retrospective data and safety data of 225Ac-PSMA are still limited. Therefore, a prospective trial is needed to determine the optimal amount of activity that can be administered. METHODS: The 225Ac-PSMA-Imaging & Therapy (I&T) trial is an investigator-initiated phase I, single-center, open label, repeated dose-escalation and expansion trial. Patient with PSMA-positive mCRPC after at least one line of chemotherapy and/or one line of nonsteroidal antiandrogen will be treated with 225Ac-PSMA-I&T in increasing amount of activity per cycle. Dose-escalation following an accelerated 3 + 3 design which allows to open the next dose-level cohort in the absence of dose limiting toxicity while the previous one is still ongoing. Up to 4 treatment cohorts will be explored including up to 3 dose-escalation cohorts and one expansion cohort where patients will be administered with the recommended dose. A total of up to 30 patients will be enrolled in this trial. All patients will be evaluated for safety. Additionally, dosimetry was performed for the patients in the dose-escalation cohorts after the first 225Ac-PSMA-I&T administration. DISCUSSION: This trial will assess the safety and tolerability of 225Ac-PSMA-I&T in patients with mCRPC to recommend the optimal dose for the phase II trial. TRIAL REGISTRATION: ClinicalTrials.gov, (NCT05902247). Retrospectively registered 13 June 2023.


Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostate-Specific Antigen , Prospective Studies , Retrospective Studies , Dipeptides/adverse effects , Radioisotopes/therapeutic use , Radiopharmaceuticals/adverse effects , Heterocyclic Compounds, 1-Ring , Treatment Outcome
5.
Int J Mol Sci ; 24(23)2023 Nov 28.
Article En | MEDLINE | ID: mdl-38069166

Most Prostate Specific Membrane Antigens (PSMAs) targeting small molecules accumulate in the salivary glands (SGs), raising concerns about SG toxicity, especially after repeated therapies or therapy with 225Ac-labeled ligands. SG toxicity is assessed clinically by the severity of patient-reported xerostomia, but this parameter can be challenging to objectively quantify. Therefore, we explored the feasibility of using SG volume as a biomarker for toxicity. In 21 patients with late-stage metastatic resistant prostate cancer (mCRPC), the PSMA volume and ligand uptake of SG were analyzed retrospectively before and after two cycles of 177Lu-PSMA (LuPSMA; cohort A) and before and after one cycle of 225Ac-PSMA-617 (AcPSMA, cohort B). Mean Volume-SG in cohort A was 59 ± 13 vs. 54 ± 16 mL (-10%, p = 0.4), and in cohort B, it was 50 ± 13 vs. 40 ± 11 mL (-20%, p = 0.007), respectively. A statistically significant decrease in the activity concentration in the SG was only observed in group B (SUVmean: 9.2 ± 2.8 vs. 5.3 ± 1.8, p < 0.0001; vs. A: SUVmean: 11.2 ± 3.3 vs. 11.1 ± 3.5, p = 0.8). SG volume and PSMA-ligand uptake are promising markers to monitor the SG toxicity after a PSMA RLT.


Prostatic Neoplasms, Castration-Resistant , Xerostomia , Humans , Male , Heterocyclic Compounds, 1-Ring/therapeutic use , Ligands , Lutetium/therapeutic use , Prostate-Specific Antigen , Prostatic Neoplasms, Castration-Resistant/pathology , Retrospective Studies , Salivary Glands/pathology , Treatment Outcome
6.
Int J Mol Sci ; 24(21)2023 Oct 28.
Article En | MEDLINE | ID: mdl-37958683

The median survival time has been reported to vary between 5 and 8 years in low-grade (WHO grade 2) astrocytoma, and between 10 and 15 years for grade 2 oligodendroglioma. Targeted alpha therapy (TAT), using the modified peptide vector [213Bi]Bi/[225Ac]Ac-DOTA-substance P, has been developed to treat glioblastoma (GBM), a prevalent malignant brain tumor. In order to assess the risk of late neurotoxicity, assuming that reduced tumor cell proliferation and invasion should directly translate into good responses in low-grade gliomas (LGGs), a limited number of patients with diffuse invasive astrocytoma (n = 8) and oligodendroglioma (n = 3) were offered TAT. In two oligodendroglioma patients, TAT was applied as a second-line treatment for tumor progression, 10 years after targeted beta therapy using [90Y]Y-DOTA-substance P. The radiopharmaceutical was locally injected directly into the tumor via a stereotactic insertion of a capsule-catheter system. The activity used for radiolabeling was 2-2.5 GBq of Bismuth-213 and 17 to 35 MBq of Actinium-225, mostly applied in a single fraction. The recurrence-free survival times were in the range of 2 to 16 years (median 11 years) in low-grade astrocytoma (n = 8), in which TAT was administered following a biopsy or tumor debulking. Regarding oligodendroglioma, the recurrence-free survival time was 24 years in the first case treated, and 4 and 5 years in the two second-line cases. In conclusion, TAT leads to long-term tumor control in the majority of patients with LGG, and recurrence has so far not manifested in patients with low-grade (grade 2) astrocytomas who received TAT as a first-line therapy. We conclude that targeted alpha therapy has the potential to become a new treatment paradigm in LGG.


Astrocytoma , Brain Neoplasms , Glioblastoma , Glioma , Oligodendroglioma , Humans , Oligodendroglioma/drug therapy , Oligodendroglioma/pathology , Substance P , Glioma/drug therapy , Glioma/radiotherapy , Astrocytoma/drug therapy , Astrocytoma/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Brain Neoplasms/pathology
7.
Materials (Basel) ; 16(17)2023 Aug 22.
Article En | MEDLINE | ID: mdl-37687424

Zirconium phosphate (ZrP), especially its alpha allotropic modification, appears to be a very promising sorbent material for the sorption and separation of various radionuclides due to its properties such as an extremely high ion exchange capacity and good radiation stability. Actinium-225 and its daughter nuclide 213Bi are alpha emitting radioisotopes of high interest for application in targeted alpha therapy of cancer. Thus, the main aim of this paper is to study the sorption of 225Ac on the α-ZrP surface and its kinetics, while the kinetics of the sorption is studied using natEu as a non-radioactive homologue of 225Ac. The sorption properties of α-ZrP were tested in an acidic environment (hydrochloric and nitric acid) using batch sorption experiments and characterized using equilibrium weight distribution coefficients Dw (mL/g). The modeling of the experimental data shows that the kinetics of 225Ac sorption on the surface of α-ZrP can be described using a film diffusion model (FD). The equilibrium weight distribution coefficient Dw for 225Ac in both hydrochloric and nitric acid reached the highest values in the concentration range 5.0-7.5 mM (14,303 ± 153 and 65,272 ± 612 mL/g, respectively). Considering the results obtained in radioactive static sorption experiments with 225Ac and in non-radioactive kinetic experiments with natEu, α-ZrP seems to be a very promising material for further construction of a 225Ac/213Bi generator.

8.
Int J Pharm ; 644: 123344, 2023 Sep 25.
Article En | MEDLINE | ID: mdl-37634663

Melanocortin-1 receptor (MC1-R) targeting alpha-melanocyte stimulating hormone-analogue (α-MSH) biomolecules labelled with α-emitting radiometal seem to be valuable in the targeted radionuclide therapy of MC1-R positive melanoma malignum (MM). Herein is reported the anti-tumor in vivo therapeutic evaluation of MC1-R-affine [213Bi]Bi-DOTA-NAPamide and HOLDamide treatment in MC1-R positive B16-F10 melanoma tumor-bearing C57BL/6J mice. On the 6th, 8th and 10th days post tumor cell inoculation; the treated groups of mice were intravenously injected with approximately 5 MBq of both amide derivatives. Beyond body weight and tumor volume assessment, [68Ga]Ga-DOTA-HOLDamide and NAPamide-based PET/MRI scans, and ex vivo biodistribution studies were executed 30,- and 90 min postinjection. In the PET/MRI imaging studies the B16-F10 tumors were clearly visualized with both 68Ga-labelled tracers, however, significantly lower tumor-to-muscle (T/M) ratios were observed by using [68Ga]Ga-DOTA-HOLDamide. After alpha-radiotherapy treatment the tumor size of the control group was larger relative to both treated cohorts, while the smallest tumor volumes were observed in the NAPamide-treated subclass on the 10th day. Relatively higher [213Bi]Bi-DOTA-NAPamide accumulation in the B16-F10 tumors (%ID/g: 2.71 ± 0.15) with discrete background activity led to excellent T/M ratios, particularly 90 min postinjection. Overall, the therapeutic application of receptor selective [213Bi]Bi-DOTA-NAPamide seems to be feasible in MC1-R positive MM management.


Melanoma, Experimental , Receptor, Melanocortin, Type 1 , Animals , Mice , Mice, Inbred C57BL , Gallium Radioisotopes , Tissue Distribution , Melanocyte-Stimulating Hormones , Melanoma, Experimental/drug therapy , Melanoma, Experimental/radiotherapy
9.
EJNMMI Radiopharm Chem ; 8(1): 13, 2023 Jun 30.
Article En | MEDLINE | ID: mdl-37389800

BACKGROUND: The [177Lu]Lu-DOTA-TATE mediated peptide receptor radionuclide therapy (PRRT) of neuroendocrine tumors (NETs) is sometimes leading to treatment resistance and disease recurrence. An interesting alternative could be the somatostatin antagonist, [177Lu]Lu-DOTA-JR11, that demonstrated better biodistribution profile and higher tumor uptake than [177Lu]Lu-DOTA-TATE. Furthermore, treatment with alpha emitters showed improvement of the therapeutic index of PRRT due to the high LET offered by the alpha particles compared to beta emitters. Therefore, [225Ac]Ac-DOTA-JR11 can be a potential candidate to improve the treatment of NETs (Graphical abstract). DOTA-JR11 was radiolabeled with [225Ac]Ac(NO3)3 and [177Lu]LuCl3. Stability studies were performed in phosphate buffered saline (PBS) and mouse serum. In vitro competitive binding assay has been carried out in U2OS-SSTR2 + cells for natLa-DOTA-JR11, natLu-DOTA-JR11 and DOTA-JR11. Ex vivo biodistribution studies were performed in mice inoculated with H69 cells at 4, 24, 48 and 72 h after injection of [225Ac]Ac-DOTA-JR11. A blocking group was included to verify uptake specificity. Dosimetry of selected organs was determined for [225Ac]Ac-DOTA-JR11 and [177Lu]Lu-DOTA-JR11. RESULTS: [225Ac]Ac-DOTA-JR11 has been successfully prepared and obtained in high radiochemical yield (RCY; 95%) and radiochemical purity (RCP; 94%). [225Ac]Ac-DOTA-JR11 showed reasonably good stability in PBS (77% intact radiopeptide at 24 h after incubation) and in mouse serum (~ 81% intact radiopeptide 24 h after incubation). [177Lu]Lu-DOTA-JR11 demonstrated excellent stability in both media (> 93%) up to 24 h post incubation. Competitive binding assay revealed that complexation of DOTA-JR11 with natLa and natLu did not affect its binding affinity to SSTR2. Similar biodistribution profiles were observed for both radiopeptides, however, higher uptake was noticed in the kidneys, liver and bone for [225Ac]Ac-DOTA-JR11 than [177Lu]Lu-DOTA-JR11. CONCLUSION: [225Ac]Ac-DOTA-JR11 showed a higher absorbed dose in the kidneys compared to [177Lu]Lu-DOTA-JR11, which may limit further studies with this radiopeptide. However, several strategies can be explored to reduce nephrotoxicity and offer opportunities for future clinical investigations with [225Ac]Ac-DOTA-JR11.

10.
J Nucl Med ; 64(5): 751-758, 2023 05.
Article En | MEDLINE | ID: mdl-37055223

Targeted radionuclide therapy (TRT) using targeting moieties labeled with α-particle-emitting radionuclides (α-TRT) is an intensely investigated treatment approach as the short range of α-particles allows effective treatment of local lesions and micrometastases. However, profound assessment of the immunomodulatory effect of α-TRT is lacking in literature. Methods: Using flow cytometry of tumors, splenocyte restimulation, and multiplex analysis of blood serum, we studied immunologic responses ensuing from TRT with an antihuman CD20 single-domain antibody radiolabeled with 225Ac in a human CD20 and ovalbumin expressing B16-melanoma model. Results: Tumor growth was delayed with α-TRT and increased blood levels of various cytokines such as interferon-γ, C-C motif chemokine ligand 5, granulocyte-macrophage colony-stimulating factor, and monocyte chemoattractant protein-1. Peripheral antitumoral T-cell responses were detected on α-TRT. At the tumor site, α-TRT modulated the cold tumor microenvironment (TME) to a more hospitable and hot habitat for antitumoral immune cells, characterized by a decrease in protumoral alternatively activated macrophages and an increase in antitumoral macrophages and dendritic cells. We also showed that α-TRT increased the percentage of programmed death-ligand 1 (PD-L1)-positive (PD-L1pos) immune cells in the TME. To circumvent this immunosuppressive countermeasure we applied immune checkpoint blockade of the programmed cell death protein 1-PD-L1 axis. Combination of α-TRT with PD-L1 blockade potentiated the therapeutic effect, however, the combination aggravated adverse events. A long-term toxicity study revealed severe kidney damage ensuing from α-TRT. Conclusion: These data suggest that α-TRT alters the TME and induces systemic antitumoral immune responses, which explains why immune checkpoint blockade enhances the therapeutic effect of α-TRT. However, further optimization is warranted to avoid adverse events.


Melanoma, Experimental , Single-Domain Antibodies , Animals , Humans , Single-Domain Antibodies/pharmacology , B7-H1 Antigen/metabolism , Tumor Microenvironment , Immune Checkpoint Inhibitors/pharmacology , Immunomodulation , Melanoma, Experimental/radiotherapy , Immunity , Cell Line, Tumor
11.
Eur J Nucl Med Mol Imaging ; 50(7): 2210-2218, 2023 06.
Article En | MEDLINE | ID: mdl-36864360

PURPOSE: 225Ac-PSMA-617 has demonstrated good anti-tumor effect as a treatment option for metastatic castration-resistant prostate cancer (mCRPC) patients. No study has previously assessed treatment outcome and survival following 225Ac-PSMA-617 treatment of de novo metastatic hormone-sensitive prostate carcinoma (mHSPC) patients. Based on the potential side effects that are known and explained to the patients by the oncologist, some of the patients refused the standard treatment and are seeking alternative therapies. Thus, we report our preliminary findings in a retrospective series of 21 mHSPC patients that refused standard treatment options and were treated with 225Ac-PSMA-617. METHODS: We retrospectively reviewed patients with histologically confirmed de novo treatment-naïve bone ± visceral mHSPC that were treated with 225Ac-PSMA-617 radioligand therapy (RLT). Inclusion criteria included an Eastern Cooperative Oncology Group (ECOG) performance status of 0 to 2, treatment-naive bone ± visceral mHSPC, and patients refusal for ADT ± docetaxel, abiraterone acetate, or enzalutamide. We evaluated the response to treatment using prostate-specific antigen (PSA) response and the progression-free survival (PFS) and overall survival (OS) as well as the toxicities. RESULTS: Twenty-one mHSPC patients were included in this preliminary work. Following treatment, twenty patients (95%) had any decline in PSA and eighteen patients (86%) presented with a PSA decline of ≥ 50% including 4 patients in whom PSA became undetectable. A lower percentage decrease in PSA following treatment was associated with increased mortality and shorter progression-free survival. Overall, administration of 225Ac-PSMA-617 was well tolerated. The commonest toxicity seen was grade I/II dry mouth observed in 94% of patients. CONCLUSIONS: Given these favorable results, randomized prospective multicenter trials assessing the clinical value of 225Ac-PSMA-617 as a therapeutic agent for mHSPC administered either as monotherapy or administered concomitant with ADT are of interest.


Carcinoma , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Prospective Studies , Prostate/pathology , Prostate-Specific Antigen/therapeutic use , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Prostatic Neoplasms, Castration-Resistant/drug therapy , Retrospective Studies , Treatment Outcome
12.
J Pharm Biomed Anal ; 229: 115374, 2023 May 30.
Article En | MEDLINE | ID: mdl-37001274

Given the rising pervasiveness of melanocortin-1 receptor (MC1-R) positive melanoma malignum (MM) and pertinent metastases, radiolabelled receptor-affine alpha-melanocyte stimulating hormone-analogue (α-MSH analogue) imaging probes would be of crucial importance in timely tumor diagnostic assessment. Herein we aimed at investigating the biodistribution and the MM targeting potential of newly synthesized 213Bi-conjugated MC1-R specific peptide-based radioligands with the establishment of MC1-R overexpressing MM preclinical model. DOTA-conjugated NAP, -HOLD, -FOLD, -and MARSamide were labelled with 213Bi. Ex vivo biodistribution studies were conducted post-administration of 3.81 ± 0.32 MBq [213Bi]Bi-DOTA conjugated deriva-tives into twenty B16-F10 tumor-bearing C57BL/6 J and healthy mice. Organ Level Internal Dose Assessment (OLINDA) and IDAC-Dose were used to calculate translational data-based absorbed radiation dose in human organs. Moderate or low %ID/g uptake of [213Bi]Bi-DOTA conjugated NAP, -HOLD, -and MARSamide and significantly increased [213Bi]Bi-DOTA-FOLDamide accumulation was observed in the thoracic and abdominal organs (p ≤ 0.01). High [213Bi]Bi-DOTA-NAP (%ID/g:3.76 ± 0.96), -and FOLDamide (%ID/g:3.28 ± 0.95) tumor tracer activity confirmed their MC1-R-affinity. The bladder wall received the highest radiation absorbed dose followed by the kidneys (bladder wall: 1.95·10-2 and 8.97·10-2 mSv/MBq; kidneys: 7.47·10-3 vs. 5.88·10-2 mSv/MBq measured by IDAC and OLINDA; respectively) indicating the suitability of the NAPamide derivative for clinical use. These novel [213Bi]Bi-DOTA-linked peptide probes displaying meaningful MC1-R affinity could be promising molecular probes in MM imaging.


Melanoma, Experimental , Humans , Animals , Mice , Melanoma, Experimental/diagnostic imaging , alpha-MSH , Receptor, Melanocortin, Type 1/metabolism , Tissue Distribution , Radiopharmaceuticals/chemistry , Mice, Inbred C57BL , Melanocyte-Stimulating Hormones
13.
Pharmaceutics ; 15(2)2023 Feb 01.
Article En | MEDLINE | ID: mdl-36839813

Since NGR-tripeptides (asparagine-glycine-arginine) selectively target neoangiogenesis-associated Aminopeptidase N (APN/CD13) on cancer cells, we aimed to evaluate the in vivo tumour targeting capability of radiolabelled, NGR-containing, ANP/CD13-selective [213Bi]Bi-DOTAGA-cKNGRE in CD13pos. HT1080 fibrosarcoma-bearing severe combined immunodeficient CB17 mice. 10 ± 1 days after cancer cell inoculation, positron emission tomography (PET) was performed applying [68Ga]Ga-DOTAGA-cKNGRE for tumour verification. On the 7th, 8th, 10th and 12th days the treated group of tumourous mice were intraperitoneally administered with 4.68 ± 0.10 MBq [213Bi]Bi-DOTAGA-cKNGRE, while the untreated tumour-bearing animals received 150 µL saline solution. In addition to body weight (BW) and tumour volume measurements, ex vivo biodistribution studies were conducted 30 and 90 min postinjection (pi.). The following quantitative standardised uptake values (SUV) confirmed the detectability of the HT1080 tumours: SUVmean and SUVmax: 0.37 ± 0.09 and 0.86 ± 0.14, respectively. Although no significant difference (p ≤ 0.05) was encountered between the BW of the treated and untreated mice, their tumour volumes measured on the 9th, 10th and 12th days differed significantly (p ≤ 0.01). Relatively higher [213Bi]Bi-DOTAGA-cKNGRE accumulation of the HT1080 neoplasms (%ID/g: 0.80 ± 0.16) compared with the other organs at 90 min time point yields better tumour-to-background ratios. Therefore, the therapeutic application of APN/CD13-affine [213Bi]Bi-DOTAGA- cKNGRE seems to be promising in receptor-positive fibrosarcoma treatment.

14.
Clin Nucl Med ; 48(5): 387-392, 2023 May 01.
Article En | MEDLINE | ID: mdl-36854309

BACKGROUND: Glioblastoma (GB) is the most malignant primary brain tumor. Therefore, introduction of new treatment options is critically important. The aim of this study was to assess local treatment with α emitters [ 213 Bi]Bi-DOTA-substance P (SP) and [ 225 Ac]Ac-DOTA-SP. METHODS: Treatment was performed as salvage therapy in patients with recurrent primary and secondary GB. [ 213 Bi]Bi-DOTA-SP with injected activity 1.85 GBq per cycle was used in 20 primary (48.2 ± 11.8 years old) and in 9 secondary (38.8 ± 10.8 years old) GB patients and [ 225 Ac]Ac-DOTA-SP in 15 primary (45.1 ± 9.9 years old) and in 6 secondary (37.8 ± 6.4 years old) GB patients with a dose escalation scheme (10, 20, and 30 MBq). RESULTS: Local treatment with [ 213 Bi]Bi-DOTA-SP and [ 225 Ac]Ac-DOTA-SP was well tolerated with only few adverse effects. There was no statistically significant difference between [ 213 Bi]Bi-DOTA-SP and [ 225 Ac]Ac-DOTA-SP groups in survival parameters. For primary GB, survival parameters of patients treated with [ 213 Bi]Bi-DOTA-SP and [ 225 Ac]Ac-DOTA-SP were as follows(in months): progression-free survival time, 2.7 versus 2.4; OS-d (overall survival from time of diagnosis to death from any cause), 23.6 versus 21.0; OS-t (overall survival from the start of treatment to death from any cause), 7.5 versus 5.0; and OS-r (overall survival from recurrence in primary tumors to death from any cause), 10.9 versus 12.0. Survival parameters of secondary GB patients treated with [ 213 Bi]Bi-DOTA-SP and [ 225 Ac]Ac-DOTA-SP were as follows (in months): progression-free survival time, 5.8 versus 2.4; OS-d, 52.3 versus 65.0; OS-t, 16.4 versus 16.0; and OS-c (overall survival from conversion into secondary GB multiforme to death from any cause), 18.4 versus 36.0. CONCLUSIONS: The similarity results of 213 Bi or 225 Ac may suggest that the local treatment of brain tumors can be greatly simplified. The experience to date shows that local radioisotope treatment of brain tumors requires further dosimetry studies, taking into account the complexity of biological processes.


Brain Neoplasms , Glioblastoma , Humans , Adult , Middle Aged , Glioblastoma/diagnostic imaging , Glioblastoma/radiotherapy , Glioblastoma/drug therapy , Substance P/therapeutic use , Heterocyclic Compounds, 1-Ring/therapeutic use , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Brain Neoplasms/drug therapy
15.
Sci Rep ; 13(1): 1347, 2023 Jan 24.
Article En | MEDLINE | ID: mdl-36693865

[Formula: see text]Ac is a radio-isotope that can be linked to biological vector molecules to treat certain distributed cancers using targeted alpha therapy. However, developing [Formula: see text]Ac-labelled radiopharmaceuticals remains a challenge due to the supply shortage of pure [Formula: see text]Ac itself. Several techniques to obtain pure [Formula: see text]Ac are being investigated, amongst which is the high-energy proton spallation of thorium or uranium combined with resonant laser ionization and mass separation. As a proof-of-principle, we perform off-line resonant ionization mass spectrometry on two samples of [Formula: see text]Ac, each with a known activity, in different chemical environments. We report overall operational collection efficiencies of 10.1(2)% and 9.9(8)% for the cases in which the [Formula: see text]Ac was deposited on a rhenium surface and a ThO[Formula: see text] mimic target matrix respectively. The bottleneck of the technique was the laser ionization efficiency, which was deduced to be 15.1(6)%.

16.
Mol Cancer Ther ; 21(12): 1835-1845, 2022 12 02.
Article En | MEDLINE | ID: mdl-36129807

Human epidermal growth factor receptor type 2 (HER2) is overexpressed in various cancers; thus, HER2-targeting single-domain antibodies (sdAb) could offer a useful platform for radioimmunotherapy. In this study, we optimized the labeling of an anti-HER2-sdAb with the α-particle-emitter 225Ac through a DOTA-derivative. The formed radioconjugate was tested for binding affinity, specificity and internalization properties, whereas cytotoxicity was evaluated by clonogenic and DNA double-strand-breaks assays. Biodistribution studies were performed in mice bearing subcutaneous HER2pos tumors to estimate absorbed doses delivered to organs and tissues. Therapeutic efficacy and potential toxicity were assessed in HER2pos intraperitoneal ovarian cancer model and in healthy C57Bl/6 mice. [225Ac]Ac-DOTA-2Rs15d exhibited specific cell uptake and cell-killing capacity in HER2pos cells (EC50 = 3.9 ± 1.1 kBq/mL). Uptake in HER2pos lesions peaked at 3 hours (9.64 ± 1.69% IA/g), with very low accumulation in other organs (<1% IA/g) except for kidneys (11.69 ± 1.10% IA/g). α-camera imaging presented homogeneous uptake of radioactivity in tumors, although heterogeneous in kidneys, with a higher signal density in cortex versus medulla. In mice with HER2pos disseminated tumors, repeated administration of [225Ac]Ac-DOTA-2Rs15d significantly prolonged survival (143 days) compared to control groups (56 and 61 days) and to the group treated with HER2-targeting mAb trastuzumab (100 days). Histopathologic evaluation revealed signs of kidney toxicity after repeated administration of [225Ac]Ac-DOTA-2Rs15d. [225Ac]Ac-DOTA-2Rs15d efficiently targeted HER2pos cells and was effective in treatment of intraperitoneal disseminated tumors, both alone and as an add-on combination with trastuzumab, albeit with substantial signs of inflammation in kidneys. This study warrants further development of [225Ac]Ac-DOTA-2Rs15d.


Neoplasms , Single-Domain Antibodies , Female , Animals , Humans , Mice , Single-Domain Antibodies/chemistry , Actinium/chemistry , Tissue Distribution , Cell Line, Tumor , Trastuzumab/pharmacology , Trastuzumab/therapeutic use
17.
Mol Pharm ; 19(8): 2818-2831, 2022 08 01.
Article En | MEDLINE | ID: mdl-35849547

Here, we propose tailored lipid liquid-crystalline carriers (cubosomes), which incorporate an anticancer drug (doxorubicin) and complexed short-lived α-emitter (bismuth-213), as a strategy to obtain more effective action toward the cancer cells. Cubosomes were formulated with doxorubicin (DOX) and an amphiphilic ligand (DOTAGA-OA), which forms stable complexes with 213Bi radionuclide. The behavior of DOX incorporated into the carrier together with the chelating agent was investigated, and the drug liberation profile was determined. The experiments revealed that the presence of the DOTAGA-OA ligand affects the activity of DOX when they are incorporated into the same carrier. This unexpected influence was explained based on the results of release studies, which proved the contribution of electrostatics in molecular interactions between the positively charged DOX and negatively charged DOTAGA-OA in acidic and neutral solutions. A significant decrease in the viability of HeLa cancer cells was achieved using sequential cell exposure: first to the radiolabeled cubosomes containing 213Bi complex and next to DOX-doped cubosomes. Therefore, the sequential procedure for the delivery of both drugs encapsulated in cubosomes is suggested for further biological and in vivo studies.


Antineoplastic Agents , Nanoparticles , Neoplasms , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Carriers/chemistry , Drug Liberation , Humans , Ligands , Lipids , Nanoparticles/chemistry , Particle Size
19.
Pharmaceuticals (Basel) ; 15(5)2022 May 02.
Article En | MEDLINE | ID: mdl-35631396

In this study, we compared the tumor-targeting properties, therapeutic efficacy, and tolerability of the humanized anti-CAIX antibody (hG250) labeled with either the α-emitter actinium-225 (225Ac) or the ß--emitter lutetium-177 (177Lu) in mice. BALB/c nude mice were grafted with human renal cell carcinoma SK-RC-52 cells and intravenously injected with 30 µg [225Ac] Ac-DOTA-hG250 (225Ac-hG250) or 30 µg [177Lu] Lu-DOTA-hG250 (177Lu-hG250), followed by ex vivo biodistribution studies. Therapeutic efficacy was evaluated in mice receiving 5, 15, and 25 kBq of 225Ac-hG250; 13 MBq of 177Lu-hG250; or no treatment. Tolerability was evaluated in non-tumor-bearing animals. High tumor uptake of both radioimmunoconjugates was observed and increased up to day 7 (212.8 ± 50.2 %IA/g vs. 101.0 ± 18.4 %IA/g for 225Ac-hG250 and 177Lu-hG250, respectively). Survival was significantly prolonged in mice treated with 15 kBq 225Ac-hG250, 25 kBq 225Ac-hG250, and 13 MBq 177Lu-hG250 compared to untreated control (p < 0.05). Non-tumor-bearing mice that received single-dose treatment with 15 or 25 kBq 225Ac-hG250 showed weight loss at the end of the experiment (day 126), and immunohistochemical analysis suggested radiation-induced nephrotoxicity. These results demonstrate the therapeutic potential of CAIX-targeted α-therapy in renal cell carcinoma. Future studies are required to find an optimal balance between therapeutic efficacy and toxicity.

20.
Eur J Nucl Med Mol Imaging ; 49(10): 3581-3592, 2022 08.
Article En | MEDLINE | ID: mdl-35384462

PURPOSE: Actinium-225-labeled prostate-specific membrane antigen ([225Ac]Ac-PSMA-617) is safe and effective in the treatment of metastatic castration-resistant prostate cancer (mCRPC). No study has specifically assessed its safety in patients with extensive skeletal metastases of mCRPC. We aimed to investigate the hematologic toxicity and efficacy of [225Ac]Ac-PSMA-617 therapy in patients with extensive skeletal metastases of mCRPC. METHODS: We retrospectively reviewed the medical record of patients treated with [225Ac]Ac-PSMA-617 for mCRPC. We included patients with a superscan pattern of skeletal metastases and those with 20 or more multifocal sites of skeletal metastases on baseline [68 Ga]Ga-PSMA-11 PET/CT. We reviewed the levels of hemoglobin, white blood cell (WBC), and platelet prior to each cycle of treatment and determined the presence of impaired bone marrow function at baseline and the grade of toxicity in the hematologic parameters induced by treatment. We evaluated the predictors of hematologic toxicity using binary logistic regression analysis. We also determined the presence of renal dysfunction before or during treatment. We assessed response to treatment using prostate-specific antigen response and the progression-free survival (PFS) and overall survival (OS). RESULTS: A total of 106 patients were included. Skeletal metastasis was in the superscan pattern in 34 patients (32.1%) and multifocal in 72 patients (67.9%). The median treatment cycle was 4 (range = 1-9). Ninety-eight patients (92.5%) had abnormal baseline hematologic parameters. One patient had grade 4 thrombocytopenia. Grade 3 anemia, leukopenia, and thrombocytopenia were seen in 1 (0.9%), 3 (2.8%), and 2 (1.9%) patients, respectively. Age, the number of treatment cycles, and the presence of renal dysfunction were significant predictors of hematologic toxicity. Eighty-five patients (80.2%) achieved PSA response. The median PFS and OS of the study population were 14:00 (95%CI: 8.15-19.86) months and 15.0 (95%CI: 12.8-17.2) months, respectively. CONCLUSIONS: [225Ac]Ac-PSMA-617 induces a good anti-tumor effect in about 80% of patients with extensive skeletal metastases of mCRPC with a rare incidence of severe hematologic toxicity. Age, number of treatment cycles, and the presence of renal dysfunction were significant risk factors for hematologic toxicity of [225Ac]Ac-PSMA-617 therapy.


Kidney Diseases , Prostatic Neoplasms, Castration-Resistant , Thrombocytopenia , Dipeptides/adverse effects , Heterocyclic Compounds, 1-Ring/adverse effects , Humans , Lutetium , Male , Positron Emission Tomography Computed Tomography , Prostate-Specific Antigen , Prostatic Neoplasms, Castration-Resistant/metabolism , Radiopharmaceuticals/adverse effects , Retrospective Studies , Treatment Outcome
...