Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 12 de 12
1.
Science ; 384(6699): 995-1000, 2024 May 31.
Article En | MEDLINE | ID: mdl-38815032

Time crystals (TCs) are many-body systems that display spontaneous breaking of time translation symmetry. We demonstrate a TC by using driven-dissipative condensates of microcavity exciton-polaritons, spontaneously formed from an incoherent particle bath. The TC phases are controlled by the power of a continuous-wave nonresonant optical drive exciting the condensate and the interaction with cavity phonons. Those phases are, for increasing power, Larmor-like precession of the condensate pseudo-spins-a signature of continuous TC; locking of the frequency of precession to self-sustained coherent phonons-stabilized TC; and doubling of TC's period by phonons-a discrete TC with continuous excitation. These results establish microcavity polaritons as a platform for the investigation of time-broken symmetry in nonhermitian systems.

2.
Nat Commun ; 14(1): 3485, 2023 Jun 19.
Article En | MEDLINE | ID: mdl-37336923

Lattices of exciton-polariton condensates represent an attractive platform for the study and implementation of non-Hermitian bosonic quantum systems with strong non-linear interactions. The possibility to actuate on them with a time dependent drive could provide for example the means to induce resonant inter-level transitions, or to perform Floquet engineering or Landau-Zener-Stückelberg state preparation. Here, we introduce polaromechanical metamaterials, two-dimensional arrays of µm-sized traps confining zero-dimensional light-matter polariton fluids and GHz phonons. A strong exciton-mediated polariton-phonon interaction induces a time-dependent inter-site polariton coupling J(t) with remarkable consequences for the dynamics. When locally perturbed by continuous wave optical excitation, a mechanical self-oscillation sets-in and polaritons respond by locking the energy detuning between neighbor sites at integer multiples of the phonon energy, evidencing asynchronous locking involving the polariton and phonon fields. These results open the path for the coherent control of dissipative quantum light fluids with hypersound in a scalable platform.

3.
Photoacoustics ; 30: 100472, 2023 Apr.
Article En | MEDLINE | ID: mdl-36950519

Ultrahigh-frequency acoustic-phonon resonators usually require atomically flat interfaces to avoid phonon scattering and dephasing, leading to expensive fabrication processes, such as molecular beam epitaxy. Mesoporous thin films are based on inexpensive wet chemical fabrication techniques that lead to relatively flat interfaces regardless the presence of nanopores. Here, we report mesoporous titanium dioxide-based acoustic resonators with resonances up to 90 GHz, and quality factors from 3 to 7. Numerical simulations show a good agreement with the picosecond ultrasonics experiments. We also numerically study the effect of changes in the speed of sound on the performance of the resonator. This change could be induced by liquid infiltration into the mesopores. Our findings constitute the first step towards the engineering of building blocks based on mesoporous thin films for reconfigurable optoacoustic sensors.

4.
Nat Commun ; 11(1): 4552, 2020 Sep 11.
Article En | MEDLINE | ID: mdl-32917874

Efficient generation of phonons is an important ingredient for a prospective electrically-driven phonon laser. Hybrid quantum systems combining cavity quantum electrodynamics and optomechanics constitute a novel platform with potential for operation at the extremely high frequency range (30-300 GHz). We report on laser-like phonon emission in a hybrid system that optomechanically couples polariton Bose-Einstein condensates (BECs) with phonons in a semiconductor microcavity. The studied system comprises GaAs/AlAs quantum wells coupled to cavity-confined optical and vibrational modes. The non-resonant continuous wave laser excitation of a polariton BEC in an individual trap of a trap array, induces coherent mechanical self-oscillation, leading to the formation of spectral sidebands displaced by harmonics of the fundamental 20 GHz mode vibration frequency. This phonon "lasing" enhances the phonon occupation five orders of magnitude above the thermal value when tunable neighbor traps are red-shifted with respect to the pumped trap BEC emission at even harmonics of the vibration mode. These experiments, supported by a theoretical model, constitute the first demonstration of coherent cavity optomechanical phenomena with exciton polaritons, paving the way for new hybrid designs for quantum technologies, phonon lasers, and phonon-photon bidirectional translators.

5.
Opt Express ; 25(20): 24437-24447, 2017 Oct 02.
Article En | MEDLINE | ID: mdl-29041388

Recent experiments demonstrated that GaAs/AlAs based micropillar cavities are promising systems for quantum optomechanics, allowing the simultaneous three-dimensional confinement of near-infrared photons and acoustic phonons in the 18-100 GHz range. Here, we investigate through numerical simulations the optomechanical properties of this new platform. We evidence how the Poisson's ratio and semiconductor/vacuum boundary conditions lead to very distinct features in the mechanical and optical three-dimensional confinement. We find a strong dependence of the mechanical quality factor and strain distribution on the micropillar radius, in great contrast to what is predicted and observed in the optical domain. The derived optomechanical coupling constants g0 reach ultra-large values in the 106 rad/s range.

6.
Phys Rev Lett ; 118(26): 263901, 2017 Jun 30.
Article En | MEDLINE | ID: mdl-28707938

Strong confinement, in all dimensions, and high mechanical frequencies are highly desirable for quantum optomechanical applications. We show that GaAs/AlAs micropillar cavities fully confine not only photons but also extremely high frequency (19-95 GHz) acoustic phonons. A strong increase of the optomechanical coupling upon reducing the pillar size is observed, together with record room-temperature Q-frequency products of 10^{14}. These mechanical resonators can integrate quantum emitters or polariton condensates, opening exciting perspectives at the interface with nonlinear and quantum optics.

7.
Phys Rev Lett ; 106(7): 077401, 2011 Feb 18.
Article En | MEDLINE | ID: mdl-21405540

We propose subharmonic resonant optical excitation with femtosecond lasers as a new method for the characterization of phononic and nanomechanical systems in the gigahertz to terahertz frequency range. This method is applied for the investigation of confined acoustic modes in a free-standing semiconductor membrane. By tuning the repetition rate of a femtosecond laser through a subharmonic of a mechanical resonance we amplify the mechanical amplitude, directly measure the linewidth with megahertz resolution, infer the lifetime of the coherently excited vibrational states, accurately determine the system's quality factor, and determine the amplitude of the mechanical motion with femtometer resolution.

8.
Phys Rev Lett ; 101(19): 197402, 2008 Nov 07.
Article En | MEDLINE | ID: mdl-19113309

We report a UV-Raman study of folded acoustic vibrations in epitaxial ferroelectric BaTiO3/SrTiO3 superlattices. The folded acoustic doublets show an anomalous temperature dependence disappearing above the ferroelectric transition, which is tuned by varying the thickness of the BaTiO3 and SrTiO3 layers. A mechanism involving the acoustic phonon modulation of the spatially periodic ferroelectric polarization explains the observed temperature dependence. These results demonstrate the strong coupling between sound, charge, and light in these multifunctional nanoscale ferroelectrics.

9.
J Phys Condens Matter ; 19(17): 176210, 2007 Apr 30.
Article En | MEDLINE | ID: mdl-21690956

We calculate the intensity of the polariton-mediated inelastic light scattering in semiconductor microcavities. We treat the exciton-photon coupling nonperturbatively and incorporate lifetime effects in both excitons and photons, and a coupling of the photons to the electron-hole continuum. Taking the matrix elements as fitting parameters, the results are in excellent agreement with measured Raman intensities due to optical phonons that are resonant with the upper polariton branches in II-VI microcavities with embedded CdTe quantum wells.

10.
Science ; 313(5793): 1614-6, 2006 Sep 15.
Article En | MEDLINE | ID: mdl-16973874

We demonstrated that ultraviolet Raman spectroscopy is an effective technique to measure the transition temperature (Tc) in ferroelectric ultrathin films and superlattices. We showed that one-unit-cell-thick BaTiO3 layers in BaTiO3/SrTiO3 superlattices are not only ferroelectric (with Tc as high as 250 kelvin) but also polarize the quantum paraelectric SrTiO3 layers adjacent to them. Tc was tuned by approximately 500 kelvin by varying the thicknesses of the BaTiO3 and SrTiO3 layers, revealing the essential roles of electrical and mechanical boundary conditions for nanoscale ferroelectricity.

11.
Phys Rev Lett ; 89(22): 227402, 2002 Nov 25.
Article En | MEDLINE | ID: mdl-12485103

Extending the idea of optical microcavities to sound waves, we propose a phonon cavity consisting of two semiconductor superlattices enclosing a spacer layer. We show that acoustical phonons can be confined in such layered structures when the spacer thickness is an integer multiple of the acoustic half-wavelength at the center of one of the superlattice folded minigaps. We report Raman scattering experiments that, taking profit of an optical microcavity geometry, demonstrate unambiguously the observation of a phonon-cavity confined acoustical vibration in a GaAs/AlAs based structure. The experimental results compare precisely with photoelastic model calculations of the Raman spectra.

...