Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Differ ; 26(6): 1138-1155, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30237509

RESUMEN

Regulation of cell and tissue homeostasis by programmed cell death is a fundamental process with wide physiological and pathological implications. The advent of scalable somatic cell genetic technologies creates the opportunity to functionally map such essential pathways, thereby identifying potential disease-relevant components. We investigated the genetic basis underlying necroptotic cell death by performing a complementary set of loss-of-function and gain-of-function genetic screens. To this end, we established FADD-deficient haploid human KBM7 cells, which specifically and efficiently undergo necroptosis after a single treatment with either TNFα or the SMAC mimetic compound birinapant. A series of unbiased gene-trap screens identified key signaling mediators, such as TNFR1, RIPK1, RIPK3, and MLKL. Among the novel components, we focused on the zinc transporter SLC39A7, whose knock-out led to necroptosis resistance by affecting TNF receptor surface levels. Orthogonal, solute carrier (SLC)-focused CRISPR/Cas9-based genetic screens revealed the exquisite specificity of SLC39A7, among ~400 SLC genes, for TNFR1-mediated and FAS-mediated but not TRAIL-R1-mediated responses. Mechanistically, we demonstrate that loss of SLC39A7 resulted in augmented ER stress and impaired receptor trafficking, thereby globally affecting downstream signaling. The newly established cellular model also allowed genome-wide gain-of-function screening for genes conferring resistance to necroptosis via the CRISPR/Cas9-based synergistic activation mediator approach. Among these, we found cIAP1 and cIAP2, and characterized the role of TNIP1, which prevented pathway activation in a ubiquitin-binding dependent manner. Altogether, the gain-of-function and loss-of-function screens described here provide a global genetic chart of the molecular factors involved in necroptosis and death receptor signaling, prompting further investigation of their individual contribution and potential role in pathological conditions.


Asunto(s)
Proteínas de Transporte de Catión/genética , Mapeo Cromosómico , Necroptosis/genética , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Sistemas CRISPR-Cas/genética , Proteínas de Transporte de Catión/deficiencia , Proteínas de Transporte de Catión/metabolismo , Muerte Celular , Línea Celular , Supervivencia Celular , Células HEK293 , Humanos , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Factor de Necrosis Tumoral alfa/metabolismo
2.
NPJ Syst Biol Appl ; 2: 16027, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28725479

RESUMEN

Studying the relationship between virus infection and cellular response is paradigmatic for our understanding of how perturbation changes biological systems. Immune response, in this context is a complex yet evolutionarily adapted and robust cellular change, and is experimentally amenable to molecular analysis. To visualize the full cellular response to virus infection, we performed temporal transcriptomics, proteomics, and phosphoproteomics analysis of vesicular stomatitis virus (VSV)-infected mouse macrophages. This enabled the understanding of how infection-induced changes in host gene and protein expression are coordinated with post-translational modifications by cells in time to best measure and control the infection process. The vast and complex molecular changes measured could be decomposed in a limited number of clusters within each category (transcripts, proteins, and protein phosphorylation) each with own kinetic parameter and characteristic pathways/processes, suggesting multiple regulatory options in the overall sensing and homeostatic program. Altogether, the data underscored a prevalent executive function to phosphorylation. Resolution of the molecular events affecting the RIG-I pathway, central to viral recognition, reveals that phosphorylation of the key innate immunity adaptor mitochondrial antiviral-signaling protein (MAVS) on S328/S330 is necessary for activation of type-I interferon and nuclear factor κ B (NFκB) pathways. To further understand the hierarchical relationships, we analyzed kinase-substrate relationships and found RAF1 and, to a lesser extent, ARAF to be inhibiting VSV replication and necessary for NFκB activation, and AKT2, but not AKT1, to be supporting VSV replication. Integrated analysis using the omics data revealed co-regulation of transmembrane transporters including SLC7A11, which was subsequently validated as a host factor in the VSV replication. The data sets are predicted to greatly empower future studies on the functional organization of the response of macrophages to viral challenges.

3.
Cell Rep ; 11(12): 1919-28, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26095358

RESUMEN

Lipid metabolism and receptor-mediated signaling are highly intertwined processes that cooperate to fulfill cellular functions and safeguard cellular homeostasis. Activation of Toll-like receptors (TLRs) leads to a complex cellular response, orchestrating a diverse range of inflammatory events that need to be tightly controlled. Here, we identified the GPI-anchored Sphingomyelin Phosphodiesterase, Acid-Like 3B (SMPDL3B) in a mass spectrometry screening campaign for membrane proteins co-purifying with TLRs. Deficiency of Smpdl3b in macrophages enhanced responsiveness to TLR stimulation and profoundly changed the cellular lipid composition and membrane fluidity. Increased cellular responses could be reverted by re-introducing affected ceramides, functionally linking membrane lipid composition and innate immune signaling. Finally, Smpdl3b-deficient mice displayed an intensified inflammatory response in TLR-dependent peritonitis models, establishing its negative regulatory role in vivo. Taken together, our results identify the membrane-modulating enzyme SMPDL3B as a negative regulator of TLR signaling that functions at the interface of membrane biology and innate immunity.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/genética , Inmunidad Innata/genética , Inflamación/genética , Peritonitis/genética , Animales , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/inmunología , Modelos Animales de Enfermedad , Humanos , Inflamación/inmunología , Inflamación/patología , Lípidos/inmunología , Macrófagos/inmunología , Ratones , Peritonitis/inmunología , Peritonitis/patología , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología
4.
Nature ; 519(7544): 477-81, 2015 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-25561175

RESUMEN

Cell growth and proliferation are tightly linked to nutrient availability. The mechanistic target of rapamycin complex 1 (mTORC1) integrates the presence of growth factors, energy levels, glucose and amino acids to modulate metabolic status and cellular responses. mTORC1 is activated at the surface of lysosomes by the RAG GTPases and the Ragulator complex through a not fully understood mechanism monitoring amino acid availability in the lysosomal lumen and involving the vacuolar H(+)-ATPase. Here we describe the uncharacterized human member 9 of the solute carrier family 38 (SLC38A9) as a lysosomal membrane-resident protein competent in amino acid transport. Extensive functional proteomic analysis established SLC38A9 as an integral part of the Ragulator-RAG GTPases machinery. Gain of SLC38A9 function rendered cells resistant to amino acid withdrawal, whereas loss of SLC38A9 expression impaired amino-acid-induced mTORC1 activation. Thus SLC38A9 is a physical and functional component of the amino acid sensing machinery that controls the activation of mTOR.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/metabolismo , Lisosomas/metabolismo , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Línea Celular , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Proteínas de Unión al GTP Monoméricas/metabolismo , Nucleótidos/metabolismo
5.
J Exp Med ; 207(12): 2689-701, 2010 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-21078886

RESUMEN

Recognition of pathogens by the innate immune system requires proteins that detect conserved molecular patterns. Nucleic acids are recognized by cytoplasmic sensors as well as by endosomal Toll-like receptors (TLRs). It has become evident that TLRs require additional proteins to be activated by their respective ligands. In this study, we show that CD14 (cluster of differentiation 14) constitutively interacts with the MyD88-dependent TLR7 and TLR9. CD14 was necessary for TLR7- and TLR9-dependent induction of proinflammatory cytokines in vitro and for TLR9-dependent innate immune responses in mice. CD14 associated with TLR9 stimulatory DNA in precipitation experiments and confocal imaging. The absence of CD14 led to reduced nucleic acid uptake in macrophages. Additionally, CD14 played a role in the stimulation of TLRs by viruses. Using various types of vesicular stomatitis virus, we showed that CD14 is dispensable for viral uptake but is required for the triggering of TLR-dependent cytokine responses. These data show that CD14 has a dual role in nucleic acid-mediated TLR activation: it promotes the selective uptake of nucleic acids, and it acts as a coreceptor for endosomal TLR activation.


Asunto(s)
Receptores de Lipopolisacáridos/fisiología , Glicoproteínas de Membrana/fisiología , Receptor Toll-Like 7/fisiología , Receptor Toll-Like 9/fisiología , Aminoquinolinas/farmacología , Animales , Secuencia de Bases , Células Cultivadas , Endosomas/metabolismo , Femenino , Humanos , Imiquimod , Virus de la Influenza A/inmunología , Interleucina-6/genética , Receptores de Lipopolisacáridos/análisis , Glicoproteínas de Membrana/análisis , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Oligodesoxirribonucleótidos/farmacología , Proteómica , Receptor Toll-Like 7/análisis , Receptor Toll-Like 9/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA