Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nat Commun ; 13(1): 3267, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672358

RESUMEN

The host's gene expression and gene regulatory response to pathogen exposure can be influenced by a combination of the host's genetic background, the type of and exposure time to pathogens. Here we provide a detailed dissection of this using single-cell RNA-sequencing of 1.3M peripheral blood mononuclear cells from 120 individuals, longitudinally exposed to three different pathogens. These analyses indicate that cell-type-specificity is a more prominent factor than pathogen-specificity regarding contexts that affect how genetics influences gene expression (i.e., eQTL) and co-expression (i.e., co-expression QTL). In monocytes, the strongest responder to pathogen stimulations, 71.4% of the genetic variants whose effect on gene expression is influenced by pathogen exposure (i.e., response QTL) also affect the co-expression between genes. This indicates widespread, context-specific changes in gene expression level and its regulation that are driven by genetics. Pathway analysis on the CLEC12A gene that exemplifies cell-type-, exposure-time- and genetic-background-dependent co-expression interactions, shows enrichment of the interferon (IFN) pathway specifically at 3-h post-exposure in monocytes. Similar genetic background-dependent association between IFN activity and CLEC12A co-expression patterns is confirmed in systemic lupus erythematosus by in silico analysis, which implies that CLEC12A might be an IFN-regulated gene. Altogether, this study highlights the importance of context for gaining a better understanding of the mechanisms of gene regulation in health and disease.


Asunto(s)
Leucocitos Mononucleares , Lupus Eritematoso Sistémico , Regulación de la Expresión Génica , Humanos , Lectinas Tipo C/genética , Leucocitos Mononucleares/metabolismo , Lupus Eritematoso Sistémico/genética , ARN/metabolismo , Receptores Mitogénicos/genética , Transducción de Señal
2.
Nat Genet ; 53(9): 1300-1310, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34475573

RESUMEN

Trait-associated genetic variants affect complex phenotypes primarily via regulatory mechanisms on the transcriptome. To investigate the genetics of gene expression, we performed cis- and trans-expression quantitative trait locus (eQTL) analyses using blood-derived expression from 31,684 individuals through the eQTLGen Consortium. We detected cis-eQTL for 88% of genes, and these were replicable in numerous tissues. Distal trans-eQTL (detected for 37% of 10,317 trait-associated variants tested) showed lower replication rates, partially due to low replication power and confounding by cell type composition. However, replication analyses in single-cell RNA-seq data prioritized intracellular trans-eQTL. Trans-eQTL exerted their effects via several mechanisms, primarily through regulation by transcription factors. Expression of 13% of the genes correlated with polygenic scores for 1,263 phenotypes, pinpointing potential drivers for those traits. In summary, this work represents a large eQTL resource, and its results serve as a starting point for in-depth interpretation of complex phenotypes.


Asunto(s)
Proteínas Sanguíneas/genética , Regulación de la Expresión Génica/genética , Sitios de Carácter Cuantitativo/genética , Estudio de Asociación del Genoma Completo , Humanos , Herencia Multifactorial/genética , Polimorfismo de Nucleótido Simple/genética , Transcriptoma/genética
3.
BMC Bioinformatics ; 21(1): 243, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32532224

RESUMEN

BACKGROUND: Expression quantitative trait loci (eQTL) studies are used to interpret the function of disease-associated genetic risk factors. To date, most eQTL analyses have been conducted in bulk tissues, such as whole blood and tissue biopsies, which are likely to mask the cell type-context of the eQTL regulatory effects. Although this context can be investigated by generating transcriptional profiles from purified cell subpopulations, current methods to do this are labor-intensive and expensive. We introduce a new method, Decon2, as a framework for estimating cell proportions using expression profiles from bulk blood samples (Decon-cell) followed by deconvolution of cell type eQTLs (Decon-eQTL). RESULTS: The estimated cell proportions from Decon-cell agree with experimental measurements across cohorts (R ≥ 0.77). Using Decon-cell, we could predict the proportions of 34 circulating cell types for 3194 samples from a population-based cohort. Next, we identified 16,362 whole-blood eQTLs and deconvoluted cell type interaction (CTi) eQTLs using the predicted cell proportions from Decon-cell. CTi eQTLs show excellent allelic directional concordance with eQTL (≥ 96-100%) and chromatin mark QTL (≥87-92%) studies that used either purified cell subpopulations or single-cell RNA-seq, outperforming the conventional interaction effect. CONCLUSIONS: Decon2 provides a method to detect cell type interaction effects from bulk blood eQTLs that is useful for pinpointing the most relevant cell type for a given complex disease. Decon2 is available as an R package and Java application (https://github.com/molgenis/systemsgenetics/tree/master/Decon2) and as a web tool (www.molgenis.org/deconvolution).


Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Sitios de Carácter Cuantitativo/inmunología , Recuento Corporal Total/métodos , Humanos
4.
Aliment Pharmacol Ther ; 51(11): 1105-1115, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32363635

RESUMEN

BACKGROUND: High inter-individual variability in therapeutic response to drugs used in the management of Inflammatory Bowel Disease (IBD) leads to high morbidity and high costs. Genetic variants predictive of thiopurine-induced myelosuppression, thiopurine-induced pancreatitis and immunogenicity of Tumour Necrosis Factor alpha (TNFα) antagonists have been identified, but uptake of pre-treatment pharmacogenetic testing into clinical guidelines has been slow. AIM: To explore the efficacy of a pharmacogenetic passport for IBD that includes multiple pharmacogenetic predictors of response. METHODS: Patients with IBD exposed to thiopurines and/or TNFα antagonists were retrospectively evaluated for the presence of thiopurine toxicity and/or immunogenicity of TNFα antagonists. All patients were genotyped using both whole-exome sequencing and the Illumina Global Screening Array. An in-house-developed computational pipeline translated genetic data into an IBD pharmacogenetic passport that predicted risks for thiopurine toxicity and immunogenicity of TNFα antagonists per patient. Using pharmacogenetic-guided treatment guidelines, we calculated clinical efficacy estimates for pharmacogenetic testing for IBD. RESULTS: Among 710 patients with IBD exposed to thiopurines and/or TNFα antagonists, 150 adverse drug responses occurred and our pharmacogenetic passport would have predicted 54 (36%) of these. Using a pharmacogenetic passport for IBD that includes genetic variants predictive of thiopurine-induced myelosuppression, thiopurine-induced pancreatitis, and immunogenicity of TNFα antagonists, 24 patients need to be genotyped to prevent one of these adverse drug responses. CONCLUSIONS: This study highlights the clinical efficacy of a pharmacogenetic passport for IBD. Implementation of such a pharmacogenetic passport into clinical management of IBD may contribute to a reduction in adverse drug responses.


Asunto(s)
Enfermedades Inflamatorias del Intestino/diagnóstico , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/genética , Variantes Farmacogenómicas/genética , Transcriptoma , Adolescente , Adulto , Anciano , Biomarcadores Farmacológicos/análisis , Estudios de Casos y Controles , Femenino , Genotipo , Humanos , Inmunosupresores/uso terapéutico , Masculino , Persona de Mediana Edad , Pruebas de Farmacogenómica/métodos , Valor Predictivo de las Pruebas , Pronóstico , Reproducibilidad de los Resultados , Estudios Retrospectivos , Transcriptoma/efectos de los fármacos , Resultado del Tratamiento , Adulto Joven
5.
PLoS Pathog ; 16(4): e1008408, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32251450

RESUMEN

Candida bloodstream infection, i.e. candidemia, is the most frequently encountered life-threatening fungal infection worldwide, with mortality rates up to almost 50%. In the majority of candidemia cases, Candida albicans is responsible. Worryingly, a global increase in the number of patients who are susceptible to infection (e.g. immunocompromised patients), has led to a rise in the incidence of candidemia in the last few decades. Therefore, a better understanding of the anti-Candida host response is essential to overcome this poor prognosis and to lower disease incidence. Here, we integrated genome-wide association studies with bulk and single-cell transcriptomic analyses of immune cells stimulated with Candida albicans to further our understanding of the anti-Candida host response. We show that differential expression analysis upon Candida stimulation in single-cell expression data can reveal the important cell types involved in the host response against Candida. This confirmed the known major role of monocytes, but more interestingly, also uncovered an important role for NK cells. Moreover, combining the power of bulk RNA-seq with the high resolution of single-cell RNA-seq data led to the identification of 27 Candida-response QTLs and revealed the cell types potentially involved herein. Integration of these response QTLs with a GWAS on candidemia susceptibility uncovered a potential new role for LY86 in candidemia susceptibility. Finally, experimental follow-up confirmed that LY86 knockdown results in reduced monocyte migration towards the chemokine MCP-1, thereby implying that this reduced migration may underlie the increased susceptibility to candidemia. Altogether, our integrative systems genetics approach identifies previously unknown mechanisms underlying the immune response to Candida infection.


Asunto(s)
Antígenos de Superficie/genética , Antígenos de Superficie/inmunología , Candida albicans/fisiología , Candidiasis/genética , Candida albicans/inmunología , Candidemia/genética , Candidemia/inmunología , Candidemia/microbiología , Candidiasis/inmunología , Candidiasis/microbiología , Estudios de Cohortes , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Células Asesinas Naturales , Análisis de Secuencia de ARN , Análisis de la Célula Individual
6.
Nat Commun ; 10(1): 2837, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31253775

RESUMEN

The diagnostic yield of exome and genome sequencing remains low (8-70%), due to incomplete knowledge on the genes that cause disease. To improve this, we use RNA-seq data from 31,499 samples to predict which genes cause specific disease phenotypes, and develop GeneNetwork Assisted Diagnostic Optimization (GADO). We show that this unbiased method, which does not rely upon specific knowledge on individual genes, is effective in both identifying previously unknown disease gene associations, and flagging genes that have previously been incorrectly implicated in disease. GADO can be run on www.genenetwork.nl by supplying HPO-terms and a list of genes that contain candidate variants. Finally, applying GADO to a cohort of 61 patients for whom exome-sequencing analysis had not resulted in a genetic diagnosis, yields likely causative genes for ten cases.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Predisposición Genética a la Enfermedad , Análisis de Secuencia de ARN/métodos , Transcriptoma , Bases de Datos de Ácidos Nucleicos , Humanos , Modelos Genéticos , Análisis de Componente Principal , Programas Informáticos , Interfaz Usuario-Computador
7.
Genome Med ; 10(1): 96, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30567569

RESUMEN

Only a small fraction of patients respond to the drug prescribed to treat their disease, which means that most are at risk of unnecessary exposure to side effects through ineffective drugs. This inter-individual variation in drug response is driven by differences in gene interactions caused by each patient's genetic background, environmental exposures, and the proportions of specific cell types involved in disease. These gene interactions can now be captured by building gene regulatory networks, by taking advantage of RNA velocity (the time derivative of the gene expression state), the ability to study hundreds of thousands of cells simultaneously, and the falling price of single-cell sequencing. Here, we propose an integrative approach that leverages these recent advances in single-cell data with the sensitivity of bulk data to enable the reconstruction of personalized, cell-type- and context-specific gene regulatory networks. We expect this approach will allow the prioritization of key driver genes for specific diseases and will provide knowledge that opens new avenues towards improved personalized healthcare.


Asunto(s)
Regulación de la Expresión Génica , Redes Reguladoras de Genes , Polimorfismo de Nucleótido Simple , Medicina de Precisión/métodos , Perfilación de la Expresión Génica/métodos , Estudio de Asociación del Genoma Completo/métodos , Humanos , Análisis de la Célula Individual/métodos
8.
Nat Genet ; 50(4): 493-497, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29610479

RESUMEN

Genome-wide association studies have identified thousands of genetic variants that are associated with disease 1 . Most of these variants have small effect sizes, but their downstream expression effects, so-called expression quantitative trait loci (eQTLs), are often large 2 and celltype-specific3-5. To identify these celltype-specific eQTLs using an unbiased approach, we used single-cell RNA sequencing to generate expression profiles of ~25,000 peripheral blood mononuclear cells from 45 donors. We identified previously reported cis-eQTLs, but also identified new celltype-specific cis-eQTLs. Finally, we generated personalized co-expression networks and identified genetic variants that significantly alter co-expression relationships (which we termed 'co-expression QTLs'). Single-cell eQTL analysis thus allows for the identification of genetic variants that impact regulatory networks.


Asunto(s)
Sitios de Carácter Cuantitativo , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Epistasis Genética , Redes Reguladoras de Genes , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Leucocitos Mononucleares/clasificación , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA