Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Environ Int ; 170: 107610, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36356553

RESUMEN

High-quality and comprehensive exposure-related data are critical for different decision contexts, including environmental and human health monitoring, and chemicals risk assessment and management. However, exposure-related data are currently scattered, frequently of unclear quality and structure, not readily accessible, and stored in various-partly overlapping-data repositories, leading to inefficient and ineffective data usage in Europe and globally. We propose strategic guidance for an integrated European exposure data production and management framework for use in science and policy, building on current and future data analysis and digitalization trends. We map the existing exposure data landscape to requirements for data analytics and repositories across European policies and regulations. We further identify needs and ways forward for improving data generation, sharing, and usage, and translate identified needs into an operational action plan for European and global advancement of exposure data for policies and regulations. Identified key areas of action are to develop consistent exposure data standards and terminology for data production and reporting, increase data transparency and availability, enhance data storage and related infrastructure, boost automation in data management, increase data integration, and advance tools for innovative data analysis. Improving and streamlining exposure data generation and uptake into science and policy is crucial for the European Chemicals Strategy for Sustainability and European Digital Strategy, in line with EU Data policies on data management and interoperability.


Asunto(s)
Ciencia de los Datos , Humanos , Europa (Continente)
2.
Environ Int ; 170: 107555, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36244229

RESUMEN

Exposure science is an emerging and rapidly growing field dedicated to all aspects concerning the contact between chemical, biological, physical or psycho-social stressors and human and ecological receptors. With that, exposure science plays a central role in protecting human and ecosystem health, and contributes to the global transition towards a green and sustainable society. In Europe, however, exposure science is currently not sufficiently recognised as a scientific field, resulting in inefficient uptake into policies. In response, the wider European exposure science community developed elements and actions under the auspices of the Europe Regional Chapter of the International Society of Exposure Science (ISES Europe), for identified priority areas, namely education, exposure models, exposure data, human biomonitoring, and policy uptake. In the present document, we synthesize these strategic elements into an overarching 'European Exposure Science Strategy 2020-2030', following three strategic objectives that focus on acknowledging exposure science as an independent and interconnected field, harmonizing approaches and tools across regulations, and exploring collaboration, education and funding mechanisms. To operationalise this strategy, we present concrete key actions and propose initiatives and funding options for advancing the underlying science, cultivating broader education and cross-sector exposure knowledge transfer, and fostering effective uptake of exposure information into policy. We aim at anchoring European efforts in the global exposure science context, with a special focus on the interface between scientific advancements, application in decision support, and dissemination and training. This will help to develop exposure science as a strong scientific field with the ultimate goal to successfully assess and manage various stressors across sectors and geographic scales.


Asunto(s)
Ecosistema , Humanos , Europa (Continente) , Unión Europea
3.
Environ Int ; 168: 107476, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36067553

RESUMEN

Human biomonitoring (HBM) is a crucial approach for exposure assessment, as emphasised in the European Commission's Chemicals Strategy for Sustainability (CSS). HBM can help to improve chemical policies in five major key areas: (1) assessing internal and aggregate exposure in different target populations; 2) assessing exposure to chemicals across life stages; (3) assessing combined exposure to multiple chemicals (mixtures); (4) bridging regulatory silos on aggregate exposure; and (5) enhancing the effectiveness of risk management measures. In this strategy paper we propose a vision and a strategy for the use of HBM in chemical regulations and public health policy in Europe and beyond. We outline six strategic objectives and a roadmap to further strengthen HBM approaches and increase their implementation in the regulatory risk assessment of chemicals to enhance our understanding of exposure and health impacts, enabling timely and targeted policy interventions and risk management. These strategic objectives are: 1) further development of sampling strategies and sample preparation; 2) further development of chemical-analytical HBM methods; 3) improving harmonisation throughout the HBM research life cycle; 4) further development of quality control / quality assurance throughout the HBM research life cycle; 5) obtain sustained funding and reinforcement by legislation; and 6) extend target-specific communication with scientists, policymakers, citizens and other stakeholders. HBM approaches are essential in risk assessment to address scientific, regulatory and societal challenges. HBM requires full and strong support from the scientific and regulatory domain to reach its full potential in public and occupational health assessment and in regulatory decision-making.

4.
J Expo Sci Environ Epidemiol ; 32(4): 513-525, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34697409

RESUMEN

BACKGROUND: A scientific framework on exposure science will boost the multiuse of exposure knowledge across EU chemicals-related policies and improve risk assessment, risk management and communication across EU safety, security and sustainability domains. OBJECTIVE: To stimulate public and private actors to align and strengthen the cross-policy adoption of exposure assessment data, methods and tools across EU legislation. METHODS: By mapping and analysing the EU regulatory landscape making use of exposure information, policy and research challenges and key areas of action are identified and translated into opportunities enhancing policy and scientific efficiency. RESULTS: Identified key areas of actions are to develop a common scientific exposure assessment framework, supported by baseline acceptance criteria and a shared knowledge base enhancing exchangeability and acceptability of exposure knowledge within and across EU chemicals-related policies. Furthermore, such framework will improve communication and management across EU chemical safety, security and sustainability policies comprising sourcing, manufacturing and global trade of goods and waste management. In support of building such a common framework and its effective use in policy and industry, exposure science innovation needs to be better embedded along the whole policymaking cycle, and be integrated into companies' safety and sustainability management systems. This will help to systemically improve regulatory risk management practices. SIGNIFICANCE: This paper constitutes an important step towards the implementation of the EU Green Deal and its underlying policy strategies, such as the Chemicals Strategy for Sustainability.


Asunto(s)
Políticas , Humanos , Medición de Riesgo
6.
Saf Sci ; 128: 104773, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32296266

RESUMEN

This paper presents an analysis of risk mitigation measures taken by countries around the world facing the current COVID-19 outbreak. In light of the current pandemic the authors collated and clustered (using harmonised terminology) the risk mitigation measures taken around the globe in the combat to contain, and since March 11, 2020, to limit the spread of the SARS-CoV-2 virus known to cause the Coronavirus disease 2019 (COVID-19). This overview gathers lessons learnt, providing an update on the current knowledge for authorities, sectors and first responders on the effectiveness of said measures, and may allow enhanced prevention, preparedness and response for future outbreaks. Various measures such as mobility restrictions, physical distancing, hygienic measures, socio-economic restrictions, communication and international support mechanisms have been clustered and are reviewed in terms of the nature of the actions taken and their qualitative early-perceived impact. At the time of writing, it is still too premature to express the quantitative effectiveness of each risk mitigation cluster, but it seems that the best mitigation results are reported when applying a combination of voluntary and enforceable measures.

7.
J Expo Sci Environ Epidemiol ; 30(6): 917-924, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-31792311

RESUMEN

Exposure information is a critical element in various regulatory and non-regulatory frameworks in Europe and elsewhere. Exposure science supports to ensure safe environments, reduce human health risks, and foster a sustainable future. However, increasing diversity in regulations and the lack of a professional identity as exposure scientists currently hamper developing the field and uptake into European policy. In response, we discuss trends, and identify three key needs for advancing and harmonizing exposure science and its application in Europe. We provide overarching building blocks and define six long-term activities to address the identified key needs, and to iteratively improve guidelines, tools, data, and education. More specifically, we propose creating European networks to maximize synergies with adjacent fields and identify funding opportunities, building common exposure assessment approaches across regulations, providing tiered education and training programmes, developing an aligned and integrated exposure assessment framework, offering best practices guidance, and launching an exposure information exchange platform. Dedicated working groups will further specify these activities in a consistent action plan. Together, these elements form the foundation for establishing goals and an action roadmap for successfully developing and implementing a 'European Exposure Science Strategy' 2020-2030, which is aligned with advances in science and technology.


Asunto(s)
Ciencia , Europa (Continente) , Humanos
8.
Artículo en Inglés | MEDLINE | ID: mdl-30360526

RESUMEN

This study aimed to estimate the exposure and related health risks of phthalates, and to assess the health risks from combined exposure to three of the phthalates sharing the same mode of action (anti-androgenicity) in children. We determined the internal exposure of 56 Iranian children and adolescents aged 6 to 18 years by analyzing seven urinary metabolites of five phthalates. The estimated daily intake values derived from the biomonitoring data ranged from 0.01 µg/kg bw/day for butyl benzyl phthalate (BBP), to 17.85 µg/kg bw/day for di(2-ethylhexyl) phthalate (DEHP). The risk assessment revealed that not only the exposure to the individual phthalates, but also the combined exposure to the three anti-androgenic phthalates (DEHP, DBP, BBP) did not raise a safety concern (hazard index values averaged 0.2). The range of maximum cumulative ratio values varied from around 1 for most individuals to around 2 in some individuals, indicating that the combined exposures were dominated by one and in some cases by two of the three anti-androgenic phthalates, especially dibutyl phthalate (DBP) and/or DEHP. Based on biomonitoring data, the overall combined exposure of Iranian children to phthalates does not raise a concern, while reduction of exposure is best focused on DEHP and DBP that showed the highest hazard quotient.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente , Ácidos Ftálicos/análisis , Adolescente , Niño , Femenino , Humanos , Irán , Masculino , Medición de Riesgo
9.
Environ Sci Pollut Res Int ; 15(5): 417-30, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18491156

RESUMEN

BACKGROUND, AIM AND SCOPE: All across Europe, people live and work in indoor environments. On average, people spend around 90% of their time indoors (homes, workplaces, cars and public transport means, etc.) and are exposed to a complex mixture of pollutants at concentration levels that are often several times higher than outdoors. These pollutants are emitted by different sources indoors and outdoors and include volatile organic compounds (VOCs), carbonyls (aldehydes and ketones) and other chemical substances often adsorbed on particles. Moreover, legal obligations opposed by legislations, such as the European Union's General Product Safety Directive (GPSD) and Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), increasingly require detailed understanding of where and how chemical substances are used throughout their life-cycle and require better characterisation of their emissions and exposure. This information is essential to be able to control emissions from sources aiming at a reduction of adverse health effects. Scientifically sound human risk assessment procedures based on qualitative and quantitative human exposure information allows a better characterisation of population exposures to chemical substances. In this context, the current paper compares inhalation exposures to three health-based EU priority substances, i.e. benzene, formaldehyde and acetaldehyde. MATERIALS AND METHODS: Distributions of urban population inhalation exposures, indoor and outdoor concentrations were created on the basis of measured AIRMEX data in 12 European cities and compared to results from existing European population exposure studies published within the scientific literature. By pooling all EU city personal exposure, indoor and outdoor concentration means, representative EU city cumulative frequency distributions were created. Population exposures were modelled with a microenvironment model using the time spent and concentrations in four microenvironments, i.e. indoors at home and at work, outdoors at work and in transit, as input parameters. Pooled EU city inhalation exposures were compared to modelled population exposures. The contributions of these microenvironments to the total daily inhalation exposure of formaldehyde, benzene and acetaldehyde were estimated. Inhalation exposures were compared to the EU annual ambient benzene air quality guideline (5 microg/m3-to be met by 2010) and the recommended (based on the INDEX project) 30-min average formaldehyde limit value (30 microg/m3). RESULTS: Indoor inhalation exposure contributions are much higher compared to the outdoor or in-transit microenvironment contributions, accounting for almost 99% in the case of formaldehyde. The highest in-transit exposure contribution was found for benzene; 29.4% of the total inhalation exposure contribution. Comparing the pooled AIRMEX EU city inhalation exposures with the modelled exposures, benzene, formaldehyde and acetaldehyde exposures are 5.1, 17.3 and 11.8 microg/m3 vs. 5.1, 20.1 and 10.2 microg/m3, respectively. Together with the fact that a dominating fraction of time is spent indoors (>90%), the total inhalation exposure is mostly driven by the time spent indoors. DISCUSSION: The approach used in this paper faced three challenges concerning exposure and time-activity data, comparability and scarce or missing in-transit data inducing careful interpretation of the results. The results obtained by AIRMEX underline that many European urban populations are still exposed to elevated levels of benzene and formaldehyde in the inhaled air. It is still likely that the annual ambient benzene air quality guideline of 5 microg/m3 in the EU and recommended formaldehyde 30-min average limit value of 30 microg/m3 are exceeded by a substantial part of populations living in urban areas. Considering multimedia and multi-pathway exposure to acetaldehyde, the biggest exposure contribution was found to be related to dietary behaviour rather than to inhalation. CONCLUSIONS: In the present study, inhalation exposures of urban populations were assessed on the basis of novel and existing exposure data. The indoor residential microenvironment contributed most to the total daily urban population inhalation exposure. The results presented in this paper suggest that a significant part of the populations living in European cities exceed the annual ambient benzene air quality guideline of 5 microg/m3 in the EU and recommended (INDEX project) formaldehyde 30-min average limit value of 30 microg/m3. RECOMMENDATIONS AND PERSPECTIVES: To reduce exposures and consequent health effects, adequate measures must be taken to diminish emissions from sources such as materials and products that especially emit benzene and formaldehyde in indoor air. In parallel, measures can be taken aiming at reducing the outdoor pollution contribution indoors. Besides emission reduction, mechanisms to effectively monitor and manage the indoor air quality should be established. These mechanisms could be developed by setting up appropriate EU indoor air guidelines.


Asunto(s)
Acetaldehído/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Benceno/análisis , Formaldehído/análisis , Exposición por Inhalación/análisis , Simulación por Computador , Unión Europea , Humanos , Modelos Químicos , Población Urbana
10.
J Expo Sci Environ Epidemiol ; 17 Suppl 1: S90-100, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17668010

RESUMEN

Understanding where and how chemicals are used throughout their life cycle is becoming increasingly important. In 2003, within the context of REACH and GPSD legislation, the European Commission started developing a European and global infrastructure of exposure methods and tools. The infrastructure aims (1) to link modeling tools and exposure-related data and scenarios in a single framework so that harmonized exposure assessment procedures can be developed for consumer products in the EU and (2) to make this framework flexible enough to allow global application. A number of issues are raised by a global infrastructure of consumer exposure modeling that answers to multi-legislative mandates. These include transparency, consistency, usability, and defensibility of the models, including the relevant degree of complexity for priority setting versus assessment. As part of the initiative to set up a harmonized global infrastructure on consumer exposure assessment, these issues were presented, discussed, and further developed in a series of European Commission-sponsored workshops organized in October 2004 and June 2005 as part of the "Harmonization of Consumer Exposure Models on a Global Scale" project. The project focused on development, harmonization, and validation of consumer exposure modeling approaches. The workshops included experts from the EU, USA, Japan, and Canada. The conclusions and recommendations made on the basis of this work are described. To help achieve harmonization of approaches, the European Commission's Joint Research Centre is proposing a framework (1) to compare information on elements of chemical risk assessment to understand exposure regulations in different countries, (2) to save time and expense by sharing information and models, and (3) to promote credible science through better communication among organizations and by peer review of assessments and assessment procedures.


Asunto(s)
Seguridad de Productos para el Consumidor , Exposición a Riesgos Ambientales/análisis , Modelos Biológicos , Medición de Riesgo/métodos , Canadá , Industria Química/legislación & jurisprudencia , Toma de Decisiones , Exposición a Riesgos Ambientales/prevención & control , Unión Europea , Política de Salud , Humanos , Cooperación Internacional , Relaciones Interprofesionales , Japón , Estados Unidos
11.
J Expo Sci Environ Epidemiol ; 17 Suppl 1: S55-66, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17609687

RESUMEN

This paper analyzes the way risk management measures (RMMs) for consumer products have been used to date in authority and industry risk assessments. A working concept for consumer product RMMs is developed, aimed at controlling, limiting or avoiding exposures, and helping to insure the safe use (or handling) of a substance as part of a consumer product. Particular focus is placed on new requirements introduced by REACH (registration, evaluation, and authorization of chemicals). A RMMs categorization approach is also developed, dividing consumer product RMMs into those that are product integrated and those that are communicated to consumers. For each of these categories, RMMs for normal use, accidental use or misuse need to be distinguished. The level of detail for documenting, assessing and communicating RMMs across supply chains can vary, depending on the type of the assessment (tiered approach). Information on RMMs was collected from published sources to demonstrate that a taxonomical approach using standard descriptors for RMMs libraries is needed for effective information exchange across supply chains.


Asunto(s)
Seguridad de Productos para el Consumidor , Exposición a Riesgos Ambientales/prevención & control , Gestión de Riesgos/métodos , Industria Química/legislación & jurisprudencia , Comunicación , Toma de Decisiones , Documentación , Unión Europea , Productos Domésticos/provisión & distribución , Humanos , Difusión de la Información , Medición de Riesgo , Gestión de Riesgos/clasificación
12.
J Expo Anal Environ Epidemiol ; 14(4): 312-22, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15254478

RESUMEN

In the framework of the EXPOLIS study in Milan, Italy, 48-h carbon monoxide (CO) exposures of 50 office workers were monitored over a 1-year period. In this work, the exposures were assessed for different averaging times and were compared with simultaneous ambient fixed-site concentrations. The effect of gas cooking and smoking and different methods of commuting on the microenvironment and exposure levels of CO were investigated. During the sampling the subjects completed a time-microenvironment-activity diary differentiating 11 microenvironments and three exposure influencing activities: gas cooking, smoking and commuting. After sampling, all exposure and time allocation data were stored in a relational database that is used in data analyses. Ambient 48-h and maximum 8-h distributions were similar compared to the respective personal exposures. The maximum 1-h personal exposures were much higher than the maximum 8-h exposures. The maximum 1-h exposures were as well higher than the corresponding ambient distribution. These findings indicate that high short-term exposures were not reflected in ambient monitoring data nor by long-term exposures. When gas cooking or smoking was present, the indoor levels at "home-" and in "other indoor" microenvironments were higher than without their presence. Compared with ambient data, the latter source was the most affective to increase the indoor levels. Exposure during commuting was higher than in all other microenvironments; the highest daily exposure contribution was found during "car/taxi" driving. Most of the CO exposure is acquired in indoor microenvironments. For the indoor microenvironments, ambient CO was the weakest predictor for "home indoor" concentrations, where the subjects spent most of their time, and the strongest for "other indoor" concentrations, where the smallest fraction of the time was spent. Of the main indoor sources, gas cooking, on average, significantly raised the indoor exposure concentrations for 45 min and tobacco smoking for 30 min. The highest exposure levels were experienced in street commuting. Personal exposures were well predicted, but 1-h maximum personal exposures were poorly predicted, by respective ambient air quality data. By the use of time-activity diaries, ETS exposure at the workplaces were probably misclassified due to differences in awareness to tobacco smoke between smokers and nonsmokers.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Monóxido de Carbono/análisis , Exposición a Riesgos Ambientales/análisis , Actividades Cotidianas , Adulto , Femenino , Humanos , Italia , Masculino , Persona de Mediana Edad , Lugar de Trabajo
13.
J Expo Anal Environ Epidemiol ; 14(2): 154-63, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15014546

RESUMEN

Current air pollution levels have been shown to affect human health. Probabilistic modeling can be used to assess exposure distributions in selected target populations. Modeling can and should be used to compare exposures in alternative future scenarios to guide society development. Such models, however, must first be validated using existing data for a past situation. This study applied probabilistic modeling to carbon monoxide (CO) exposures using EXPOLIS-Milan data. In the current work, the model performance was evaluated by comparing modeled exposure distributions to observed ones. Model performance was studied in detail in two dimensions; (i) for different averaging times (1, 8 and 24 h) and (ii) using different detail in defining the microenvironments in the model (two, five and 11 microenvironments). (iii) The number of exposure events leading to exceeding the 8-h guideline was estimated. Population time activity was modeled using a fractions-of-time approach assuming that some time is spent in each microenvironment used in the model. This approach is best suited for averaging times from 24 h upwards. In this study, we tested how this approach affects results when used for shorter averaging times, 1 and 8 h. Models for each averaging time were run with two, five and 11 microenvironments. The two-microenvironment models underestimated the means and standard deviations (SDs) slightly for all averaging times. The five- and 11-microenvironment models matched the means quite well but underestimated SDs in several cases. For 1- and 24-h averaging times the simulated SDs are slightly smaller than the corresponding observed values. The 8-h model matched the observed exposure levels best. The results show that for CO (i) the modeling approach can be applied for averaging times from 8 to 24 h and as a screening model even to an averaging time of 1 h; (ii) the number of microenvironments affects only weakly the results and in the studied cases only exposure levels below the 80th percentile; (iii) this kind of model can be used to estimate the number of high-exposure events related to adverse health effects. By extrapolation beyond the observed data, it was shown that Milanese office workers may experience adverse health effects caused by CO.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Monóxido de Carbono/análisis , Simulación por Computador , Modelos Teóricos , Exposición Profesional/análisis , Europa (Continente) , Humanos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...