Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39312423

RESUMEN

Dimensionality reduction techniques are widely used for visualizing high-dimensional data. However, support for interpreting patterns of dimension reduction results in the context of the original data space is often insufficient. Consequently, users may struggle to extract insights from the projections. In this paper, we introduce DimBridge, a visual analytics tool that allows users to interact with visual patterns in a projection and retrieve corresponding data patterns. DimBridge supports several interactions, allowing users to perform various analyses, from contrasting multiple clusters to explaining complex latent structures. Leveraging first-order predicate logic, DimBridge identifies subspaces in the original dimensions relevant to a queried pattern and provides an interface for users to visualize and interact with them. We demonstrate how DimBridge can help users overcome the challenges associated with interpreting visual patterns in projections.

2.
Fertil Steril ; 117(3): 528-535, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34998577

RESUMEN

OBJECTIVE: To perform a series of analyses characterizing an artificial intelligence (AI) model for ranking blastocyst-stage embryos. The primary objective was to evaluate the benefit of the model for predicting clinical pregnancy, whereas the secondary objective was to identify limitations that may impact clinical use. DESIGN: Retrospective study. SETTING: Consortium of 11 assisted reproductive technology centers in the United States. PATIENT(S): Static images of 5,923 transferred blastocysts and 2,614 nontransferred aneuploid blastocysts. INTERVENTION(S): None. MAIN OUTCOME MEASURE(S): Prediction of clinical pregnancy (fetal heartbeat). RESULT(S): The area under the curve of the AI model ranged from 0.6 to 0.7 and outperformed manual morphology grading overall and on a per-site basis. A bootstrapped study predicted improved pregnancy rates between +5% and +12% per site using AI compared with manual grading using an inverted microscope. One site that used a low-magnification stereo zoom microscope did not show predicted improvement with the AI. Visualization techniques and attribution algorithms revealed that the features learned by the AI model largely overlap with the features of manual grading systems. Two sources of bias relating to the type of microscope and presence of embryo holding micropipettes were identified and mitigated. The analysis of AI scores in relation to pregnancy rates showed that score differences of ≥0.1 (10%) correspond with improved pregnancy rates, whereas score differences of <0.1 may not be clinically meaningful. CONCLUSION(S): This study demonstrates the potential of AI for ranking blastocyst stage embryos and highlights potential limitations related to image quality, bias, and granularity of scores.


Asunto(s)
Inteligencia Artificial/normas , Blastocisto/citología , Transferencia de Embrión/normas , Procesamiento de Imagen Asistido por Computador/normas , Blastocisto/fisiología , Estudios de Cohortes , Bases de Datos Factuales/normas , Transferencia de Embrión/métodos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía/métodos , Microscopía/normas , Embarazo , Índice de Embarazo/tendencias , Estudios Retrospectivos
3.
IEEE Trans Vis Comput Graph ; 27(5): 2638-2647, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33750700

RESUMEN

With the rapidly increasing resolutions of 360° cameras, head-mounted displays, and live-streaming services, streaming high-resolution panoramic videos over limited-bandwidth networks is becoming a critical challenge. Foveated video streaming can address this rising challenge in the context of eye-tracking-equipped virtual reality head-mounted displays. However, conventional log-polar foveated rendering suffers from a number of visual artifacts such as aliasing and flickering. In this paper, we introduce a new log-rectilinear transformation that incorporates summed-area table filtering and off-the-shelf video codecs to enable foveated streaming of 360° videos suitable for VR headsets with built-in eye-tracking. To validate our approach, we build a client-server system prototype for streaming 360° videos which leverages parallel algorithms over real-time video transcoding. We conduct quantitative experiments on an existing 360° video dataset and observe that the log-rectilinear transformation paired with summed-area table filtering heavily reduces flickering compared to log-polar subsampling while also yielding an additional 10% reduction in bandwidth usage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA