Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 75(13): 4005-4023, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38636949

RESUMEN

The thermal tolerance of symbiodiniacean photo-endosymbionts largely underpins the thermal bleaching resilience of their cnidarian hosts such as corals and the coral model Exaiptasia diaphana. While variation in thermal tolerance between species is well documented, variation between conspecific strains is understudied. We compared the thermal tolerance of three closely related strains of Breviolum minutum represented by two internal transcribed spacer region 2 profiles (one strain B1-B1o-B1g-B1p and the other two strains B1-B1a-B1b-B1g) and differences in photochemical and non-photochemical quenching, de-epoxidation state of photopigments, and accumulation of reactive oxygen species under rapid short-term cumulative temperature stress (26-40 °C). We found that B. minutum strains employ distinct photoprotective strategies, resulting in different upper thermal tolerances. We provide evidence for previously unknown interdependencies between thermal tolerance traits and photoprotective mechanisms that include a delicate balancing of excitation energy and its dissipation through fast relaxing and state transition components of non-photochemical quenching. The more thermally tolerant B. minutum strain (B1-B1o-B1g-B1p) exhibited an enhanced de-epoxidation that is strongly linked to the thylakoid membrane melting point and possibly membrane rigidification minimizing oxidative damage. This study provides an in-depth understanding of photoprotective mechanisms underpinning thermal tolerance in closely related strains of B. minutum.


Asunto(s)
Fotosíntesis , Dinoflagelados/fisiología , Respuesta al Choque Térmico , Calor
2.
Trends Microbiol ; 32(7): 640-649, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38212193

RESUMEN

Chemotaxis allows microorganisms to direct movement in response to chemical stimuli. Bacteria use this behaviour to develop spatial associations with animals and plants, and even larger microbes. However, current theory suggests that constraints imposed by the limits of chemotactic sensory systems will prevent sensing of chemical gradients emanating from cells smaller than a few micrometres, precluding the utility of chemotaxis in interactions between individual bacteria. Yet, recent evidence has revealed surprising levels of bacterial chemotactic precision, as well as a role for chemotaxis in metabolite exchange between bacterial cells. If indeed widespread, chemotactic sensing between bacteria could represent an important, but largely overlooked, phenotype within interbacterial interactions, and play a significant role in shaping cooperative and competitive relationships.


Asunto(s)
Bacterias , Fenómenos Fisiológicos Bacterianos , Quimiotaxis , Interacciones Microbianas , Quimiotaxis/fisiología , Bacterias/metabolismo , Interacciones Microbianas/fisiología , Proteínas Bacterianas/metabolismo
3.
Nat Microbiol ; 8(3): 510-521, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36759754

RESUMEN

Behaviours such as chemotaxis can facilitate metabolic exchanges between phytoplankton and heterotrophic bacteria, which ultimately regulate oceanic productivity and biogeochemistry. However, numerically dominant picophytoplankton have been considered too small to be detected by chemotactic bacteria, implying that cell-cell interactions might not be possible between some of the most abundant organisms in the ocean. Here we examined how bacterial behaviour influences metabolic exchanges at the single-cell level between the ubiquitous picophytoplankton Synechococcus and the heterotrophic bacterium Marinobacter adhaerens, using bacterial mutants deficient in motility and chemotaxis. Stable-isotope tracking revealed that chemotaxis increased nitrogen and carbon uptake of both partners by up to 4.4-fold. A mathematical model following thousands of cells confirmed that short periods of exposure to small but nutrient-rich microenvironments surrounding Synechococcus cells provide a considerable competitive advantage to chemotactic bacteria. These findings reveal that transient interactions mediated by chemotaxis can underpin metabolic relationships among the ocean's most abundant microorganisms.


Asunto(s)
Quimiotaxis , Synechococcus , Océanos y Mares , Procesos Heterotróficos/fisiología , Synechococcus/genética , Fitoplancton/genética , Fitoplancton/metabolismo
4.
Cell Rep Methods ; 2(5): 100216, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35637907

RESUMEN

From individual cells to whole organisms, O2 transport unfolds across micrometer- to millimeter-length scales and can change within milliseconds in response to fluid flows and organismal behavior. The spatiotemporal complexity of these processes makes the accurate assessment of O2 dynamics via currently available methods difficult or unreliable. Here, we present "sensPIV," a method to simultaneously measure O2 concentrations and flow fields. By tracking O2-sensitive microparticles in flow using imaging technologies that allow for instantaneous referencing, we measured O2 transport within (1) microfluidic devices, (2) sinking model aggregates, and (3) complex colony-forming corals. Through the use of sensPIV, we find that corals use ciliary movement to link zones of photosynthetic O2 production to zones of O2 consumption. SensPIV can potentially be extendable to study flow-organism interactions across many life-science and engineering applications.


Asunto(s)
Antozoos , Oxígeno , Animales , Oxígeno/metabolismo , Fotosíntesis , Antozoos/metabolismo
5.
J Vis Exp ; (155)2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-32065137

RESUMEN

We demonstrate a method for the generation of controlled, dynamic chemical pulses-where localized chemoattractant becomes suddenly available at the microscale-to create micro-environments for microbial chemotaxis experiments. To create chemical pulses, we developed a system to introduce amino acid sources near-instantaneously by photolysis of caged amino acids within a polydimethylsiloxane (PDMS) microfluidic chamber containing a bacterial suspension. We applied this method to the chemotactic bacterium, Vibrio ordalii, which can actively climb these dynamic chemical gradients while being tracked by video microscopy. Amino acids, rendered biologically inert ('caged') by chemical modification with a photoremovable protecting group, are uniformly present in the suspension but not available for consumption until their sudden release, which occurs at user-defined points in time and space by means of a near-UV-A focused LED beam. The number of molecules released in the pulse can be determined by a calibration relationship between exposure time and uncaging fraction, where the absorption spectrum after photolysis is characterized by using UV-Vis spectroscopy. A nanoporous polycarbonate (PCTE) membrane can be integrated into the microfluidic device to allow the continuous removal by flow of the uncaged compounds and the spent media. A strong, irreversible bond between the PCTE membrane and the PDMS microfluidic structure is achieved by coating the membrane with a solution of 3-aminopropyltriethoxysilane (APTES) followed by plasma activation of the surfaces to be bonded. A computer-controlled system can generate user-defined sequences of pulses at different locations and with different intensities, so as to create resource landscapes with prescribed spatial and temporal variability. In each chemical landscape, the dynamics of bacterial movement at the individual scale and their accumulation at the population level can be obtained, thereby allowing the quantification of chemotactic performance and its effects on bacterial aggregations in ecologically relevant environments.


Asunto(s)
Dispositivos Laboratorio en un Chip/normas , Microfluídica/instrumentación , Humanos
6.
Proc Natl Acad Sci U S A ; 116(22): 10792-10797, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31097577

RESUMEN

Ephemeral aggregations of bacteria are ubiquitous in the environment, where they serve as hotbeds of metabolic activity, nutrient cycling, and horizontal gene transfer. In many cases, these regions of high bacterial concentration are thought to form when motile cells use chemotaxis to navigate to chemical hotspots. However, what governs the dynamics of bacterial aggregations is unclear. Here, we use an experimental platform to create realistic submillimeter-scale nutrient pulses with controlled nutrient concentrations. By combining experiments, mathematical theory, and agent-based simulations, we show that individual Vibrio ordalii bacteria begin chemotaxis toward hotspots of dissolved organic matter (DOM) when the magnitude of the chemical gradient rises sufficiently far above the sensory noise that is generated by stochastic encounters with chemoattractant molecules. Each DOM hotspot is surrounded by a dynamic ring of chemotaxing cells, which congregate in regions of high DOM concentration before dispersing as DOM diffuses and gradients become too noisy for cells to respond to. We demonstrate that V. ordalii operates close to the theoretical limits on chemotactic precision. Numerical simulations of chemotactic bacteria, in which molecule counting noise is explicitly taken into account, point at a tradeoff between nutrient acquisition and the cost of chemotactic precision. More generally, our results illustrate how limits on sensory precision can be used to understand the location, spatial extent, and lifespan of bacterial behavioral responses in ecologically relevant environments.


Asunto(s)
Bacterias , Quimiotaxis/fisiología , Modelos Biológicos , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Factores Quimiotácticos/farmacología , Simulación por Computador , Ambiente , Relación Señal-Ruido , Vibrio/efectos de los fármacos , Vibrio/fisiología
7.
J R Soc Interface ; 15(147)2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30305422

RESUMEN

Despite evidence for a hydrodynamic origin of flagellar synchronization between different eukaryotic cells, recent experiments have shown that in single multi-flagellated organisms, coordination hinges instead on direct basal body connections. The mechanism by which these connections lead to coordination, however, is currently not understood. Here, we focus on the model biflagellate Chlamydomonas reinhardtii, and propose a minimal model for the synchronization of its two flagella as a result of both hydrodynamic and direct mechanical coupling. A spectrum of different types of coordination can be selected, depending on small changes in the stiffness of intracellular couplings. These include prolonged in-phase and anti-phase synchronization, as well as a range of multi-stable states induced by spontaneous symmetry breaking of the system. Linking synchrony to intracellular stiffness could lead to the use of flagellar dynamics as a probe for the mechanical state of the cell.


Asunto(s)
Flagelos , Modelos Biológicos , Fenómenos Biomecánicos
8.
Nature ; 544(7651): 498-502, 2017 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-28405025

RESUMEN

Vaccine-induced high-avidity IgA can protect against bacterial enteropathogens by directly neutralizing virulence factors or by poorly defined mechanisms that physically impede bacterial interactions with the gut tissues ('immune exclusion'). IgA-mediated cross-linking clumps bacteria in the gut lumen and is critical for protection against infection by non-typhoidal Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium). However, classical agglutination, which was thought to drive this process, is efficient only at high pathogen densities (≥108 non-motile bacteria per gram). In typical infections, much lower densities (100-107 colony-forming units per gram) of rapidly dividing bacteria are present in the gut lumen. Here we show that a different physical process drives formation of clumps in vivo: IgA-mediated cross-linking enchains daughter cells, preventing their separation after division, and clumping is therefore dependent on growth. Enchained growth is effective at all realistic pathogen densities, and accelerates pathogen clearance from the gut lumen. Furthermore, IgA enchains plasmid-donor and -recipient clones into separate clumps, impeding conjugative plasmid transfer in vivo. Enchained growth is therefore a mechanism by which IgA can disarm and clear potentially invasive species from the intestinal lumen without requiring high pathogen densities, inflammation or bacterial killing. Furthermore, our results reveal an untapped potential for oral vaccines in combating the spread of antimicrobial resistance.


Asunto(s)
Afinidad de Anticuerpos , Inmunoglobulina A/inmunología , Intestinos/inmunología , Intestinos/microbiología , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/inmunología , Animales , Adhesión Bacteriana , Vacunas Bacterianas , Ciego/inmunología , Ciego/microbiología , Recuento de Colonia Microbiana , Conjugación Genética , Femenino , Humanos , Masculino , Ratones , Plásmidos/genética , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/prevención & control , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidad
10.
Proc Natl Acad Sci U S A ; 113(34): 9413-20, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27496324

RESUMEN

The ability to navigate is a hallmark of living systems, from single cells to higher animals. Searching for targets, such as food or mates in particular, is one of the fundamental navigational tasks many organisms must execute to survive and reproduce. Here, we argue that a recent surge of studies of the proximate mechanisms that underlie search behavior offers a new opportunity to integrate the biophysics and neuroscience of sensory systems with ecological and evolutionary processes, closing a feedback loop that promises exciting new avenues of scientific exploration at the frontier of systems biology.


Asunto(s)
Algoritmos , Toma de Decisiones/fisiología , Conducta Exploratoria/fisiología , Preferencia en el Apareamiento Animal/fisiología , Patrones de Reconocimiento Fisiológico , Reproducción/fisiología , Animales , Evolución Biológica , Quimiotaxis/fisiología , Ecología , Escherichia coli/fisiología , Atractivos Sexuales/biosíntesis , Atractivos Sexuales/metabolismo , Biología de Sistemas
11.
J R Soc Interface ; 13(114): 20150844, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26763331

RESUMEN

Many chemotactic bacteria inhabit environments in which chemicals appear as localized pulses and evolve by processes such as diffusion and mixing. We show that, in such environments, physical limits on the accuracy of temporal gradient sensing govern when and where bacteria can accurately measure the cues they use to navigate. Chemical pulses are surrounded by a predictable dynamic region, outside which bacterial cells cannot resolve gradients above noise. The outer boundary of this region initially expands in proportion to the square root of time before rapidly contracting. Our analysis also reveals how chemokinesis-the increase in swimming speed many bacteria exhibit when absolute chemical concentration exceeds a threshold-may serve to enhance chemotactic accuracy and sensitivity when the chemical landscape is dynamic. More generally, our framework provides a rigorous method for partitioning bacteria into populations that are 'near' and 'far' from chemical hotspots in complex, rapidly evolving environments such as those that dominate aquatic ecosystems.


Asunto(s)
Bacterias , Fenómenos Fisiológicos Bacterianos , Modelos Biológicos
12.
Phys Rev Fluids ; 1: 081201, 2016 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-30123853

RESUMEN

Eukaryotic cilia and flagella are chemo-mechanical oscillators capable of generating long-range coordinated motions known as metachronal waves. Pair synchronization is a fundamental requirement for these collective dynamics, but it is generally not sufficient for collective phase-locking, chiefly due to the effect of long-range interactions. Here we explore experimentally and numerically a minimal model for a ciliated surface: hydrodynamically coupled oscillators rotating above a no-slip plane. Increasing their distance from the wall profoundly affects the global dynamics, due to variations in hydrodynamic interaction range. The array undergoes a transition from a traveling wave to either a steady chevron pattern or one punctuated by periodic phase defects. Within the transition between these regimes the system displays behavior reminiscent of chimera states.

13.
Nat Rev Microbiol ; 13(12): 761-75, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26568072

RESUMEN

Motility is one of the most dynamic features of the microbial world. The ability to swim or crawl frequently governs how microorganisms interact with their physical and chemical environments, and underpins a myriad of microbial processes. The ability to resolve temporal dynamics through time-lapse video microscopy and the precise control of the physicochemical microenvironment afforded by microfluidics offer powerful new opportunities to study the many motility adaptations of microorganisms and thereby further our understanding of their ecology. In this Review, we outline recent insights into the motility strategies of microorganisms brought about by these techniques, including the hydrodynamic signature of microorganisms, their locomotion mechanics, chemotaxis, their motility near and on surfaces, swimming in moving fluids and motility in dense microbial suspensions.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Locomoción , Microfluídica/métodos , Imagen Óptica/métodos , Imagen de Lapso de Tiempo/métodos , Técnicas Microbiológicas/métodos
14.
J R Soc Interface ; 12(108): 20141358, 2015 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-26040592

RESUMEN

Groups of eukaryotic cilia and flagella are capable of coordinating their beating over large scales, routinely exhibiting collective dynamics in the form of metachronal waves. The origin of this behavior--possibly influenced by both mechanical interactions and direct biological regulation--is poorly understood, in large part due to a lack of quantitative experimental studies. Here we characterize in detail flagellar coordination on the surface of the multicellular alga Volvox carteri, an emerging model organism for flagellar dynamics. Our studies reveal for the first time that the average metachronal coordination observed is punctuated by periodic phase defects during which synchrony is partial and limited to specific groups of cells. A minimal model of hydrodynamically coupled oscillators can reproduce semi-quantitatively the characteristics of the average metachronal dynamics, and the emergence of defects. We systematically study the model's behaviour by assessing the effect of changing intrinsic rotor characteristics, including oscillator stiffness and the nature of their internal driving force, as well as their geometric properties and spatial arrangement. Our results suggest that metachronal coordination follows from deformations in the oscillators' limit cycles induced by hydrodynamic stresses, and that defects result from sufficiently steep local biases in the oscillators' intrinsic frequencies. Additionally, we find that random variations in the intrinsic rotor frequencies increase the robustness of the average properties of the emergent metachronal waves.


Asunto(s)
Flagelos/fisiología , Modelos Biológicos , Volvox/fisiología , Hidrodinámica
15.
Elife ; 3: e02750, 2014 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-25073925

RESUMEN

Flows generated by ensembles of flagella are crucial to development, motility and sensing, but the mechanisms behind this striking coordination remain unclear. We present novel experiments in which two micropipette-held somatic cells of Volvox carteri, with distinct intrinsic beating frequencies, are studied by high-speed imaging as a function of their separation and orientation. Analysis of time series shows that the interflagellar coupling, constrained by lack of connections between cells to be hydrodynamical, exhibits a spatial dependence consistent with theory. At close spacings it produces robust synchrony for thousands of beats, while at increasing separations synchrony is degraded by stochastic processes. Manipulation of the relative flagellar orientation reveals in-phase and antiphase states, consistent with dynamical theories. Flagellar tracking with exquisite precision reveals waveform changes that result from hydrodynamic coupling. This study proves unequivocally that flagella coupled solely through a fluid can achieve robust synchrony despite differences in their intrinsic properties.DOI: http://dx.doi.org/10.7554/eLife.02750.001.


Asunto(s)
Flagelos/metabolismo , Hidrodinámica , Movimiento Celular , Chlamydomonas/citología , Chlamydomonas/metabolismo , Modelos Moleculares , Procesos Estocásticos , Volvox/citología , Volvox/metabolismo
16.
Phys Rev Lett ; 109(26): 268102, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-23368623

RESUMEN

From unicellular ciliates to the respiratory epithelium, carpets of cilia display metachronal waves, long-wavelength phase modulations of the beating cycles, which theory suggests may arise from hydrodynamic coupling. Experiments have been limited by a lack of organisms suitable for systematic study of flagella and the flows they create. Using time-resolved particle image velocimetry, we report the discovery of metachronal waves on the surface of the colonial alga Volvox carteri, whose large size and ease of visualization make it an ideal model organism for these studies. An elastohydrodynamic model of weakly coupled compliant oscillators, recast as interacting phase oscillators, reveals that orbit compliance can produce fast, robust synchronization in a manner essentially independent of boundary conditions, and offers an intuitive understanding of a possible mechanism leading to the emergence of metachronal waves.


Asunto(s)
Flagelos/fisiología , Modelos Biológicos , Volvox/fisiología , Biofisica , Hidrodinámica , Movimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA