Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37175674

RESUMEN

SET-M33 is a synthetic peptide that is being developed as a new antibiotic against major Gram-negative bacteria. Here we report two in vivo studies to assess the toxicity and efficacy of the peptide in a murine model of pulmonary inflammation. First, we present the toxicity study in which SET-M33 was administered to CD-1 mice by snout inhalation exposure for 1 h/day for 7 days at doses of 5 and 20 mg/kg/day. The results showed adverse clinical signs and effects on body weight at the higher dose, as well as some treatment-related histopathology findings (lungs and bronchi, nose/turbinates, larynx and tracheal bifurcation). On this basis, the no observable adverse effect level (NOAEL) was considered to be 5 mg/kg/day. We then report an efficacy study of the peptide in an endotoxin (LPS)-induced pulmonary inflammation model. Intratracheal administration of SET-M33 at 0.5, 2 and 5 mg/kg significantly inhibited BAL neutrophil cell counts after an LPS challenge. A significant reduction in pro-inflammatory cytokines, KC, MIP-1α, IP-10, MCP-1 and TNF-α was also recorded after SET-M33 administration.


Asunto(s)
Endotoxinas , Neumonía , Ratones , Animales , Endotoxinas/toxicidad , Péptidos Antimicrobianos , Lipopolisacáridos/toxicidad , Neumonía/inducido químicamente , Neumonía/tratamiento farmacológico , Citocinas , Péptidos , Inflamación/tratamiento farmacológico , Líquido del Lavado Bronquioalveolar
2.
Epileptic Disord ; 25(3): 371-382, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37186408

RESUMEN

BACKGROUND: Loss of function mutations in PCDH19 gene causes an X-linked, infant-onset clustering epilepsy, associated with intellectual disability and autistic features. The unique pattern of inheritance includes random X-chromosome inactivation, which leads to pathological tissue mosaicism. Females carrying PCDH19 mutations are affected, while males have a normal phenotype. No cure is presently available for this disease. METHODS: Fibroblasts from a female patient carrying frameshift mutation were reprogrammed into human induced pluripotent stem cells (hiPSCs). To create a cell model of PCDH19-clustering epilepsy (PCDH19-CE) where both cell populations co-exist, we created mosaic neurons by mixing wild-type (WT) and mutated (mut) hiPSC clones, and differentiated them into mature neurons with overexpression of the transcriptional factor Neurogenin 2. RESULTS: We generated functional neurons from patient-derived iPSC using a rapid and efficient method of differentiation through overexpression of Neurogenin 2. Was revealed an accelerated maturation and higher arborisation in the mutated neurons, while the mosaic neurons showed the highest frequency of action potential firing and hyperexcitability features, compared to mutated and WT neurons. CONCLUSIONS: Our findings provide evidence that PCDH19 c.2133delG mutation affects proper metaphases with increased numbers of centrosomes in stem cells and accelerates neuronal maturation in premature cells. PCDH19 mosaic neurons showed elevated excitability, representing the situation in PCDH19-CE brain. We suggest Ngn2 hiPSC-derived PCDH19 neurons as an informative experimental tool for understanding the pathogenesis of PCDH19-CE and a suitable approach for use in targeted drug screening strategies.


Asunto(s)
Epilepsia , Células Madre Pluripotentes Inducidas , Masculino , Humanos , Femenino , Cadherinas/genética , Protocadherinas , Epilepsia/genética , Mutación , Análisis por Conglomerados
3.
Pharmaceutics ; 14(12)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36559270

RESUMEN

In this work, giant unilamellar vesicles (GUVs) were synthesized by blending the natural phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) with a photoswitchable amphiphile (1) that undergoes photoisomerization upon irradiation with UV-A (E to Z) and blue (Z to E) light. The mixed vesicles showed marked changes in behavior in response to UV light, including changes in morphology and the opening of pores. The fine control of membrane permeability with consequent cargo release could be attained by modulating either the UV irradiation intensity or the membrane composition. As a proof of concept, the photocontrolled release of sucrose from mixed GUVs is demonstrated using microscopy (phase contrast) and confocal studies. The permeability of the GUVs to sucrose could be increased to ~4 × 10-2 µm/s when the system was illuminated by UV light. With respect to previously reported systems (entirely composed of synthetic amphiphiles), our findings demonstrate the potential of photosensitive GUVs that are mainly composed of natural lipids to be used in medical and biomedical applications, such as targeted drug delivery and localized topical treatments.

4.
Sci Rep ; 12(1): 19294, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36369523

RESUMEN

The antimicrobial peptide SET-M33 is under study for the development of a new antibiotic against major Gram-negative pathogens. Here we report the toxicological evaluation of SET-M33 administered intravenously to rats and dogs. Dose range finding experiments determined the doses to use in toxicokinetic evaluation, clinical biochemistry analysis, necroscopy and in neurological and respiratory measurements. Clinical laboratory investigations in dogs and rats showed a dose-related increase in creatinine and urea levels, indicating that the kidneys are the target organ. This was also confirmed by necroscopy studies of animal tissues, where signs of degeneration and regeneration were found in kidney when SET-M33 was administered at the highest doses in the two animal species. Neurological toxicity measurements by the Irwin method and respiratory function evaluation in rats did not reveal any toxic effect even at the highest dose. Finally, repeated administration of SET-M33 by short infusion in dogs revealed a no-observed-adverse-effect-level of 0.5 mg/kg/day.


Asunto(s)
Antiinfecciosos , Péptidos Antimicrobianos , Ratas , Perros , Animales , Pruebas de Sensibilidad Microbiana , Antibacterianos/toxicidad , Antiinfecciosos/toxicidad , Péptidos , Relación Dosis-Respuesta a Droga
5.
Pharmaceutics ; 14(10)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36297519

RESUMEN

Endodontic and periodontal disease are conditions of infectious origin that can lead to tooth loss or develop into systemic hyperinflammation, which may be associated with a wide variety of diseases, including cardiovascular. Endodontic and periodontal treatment often relies on antibiotics. Since new antimicrobial resistances are a major threat, the use of standard antibiotics is not recommended when the infection is only local. Antimicrobial peptides were recently demonstrated to be valid alternatives for dental treatments. The antimicrobial peptide M33D is a tetrabranched peptide active against Gram-negative and Gram-positive bacteria. It has a long life, unusual for peptides, because its branched form provides resistance to proteases. Here the efficacy of M33D and of its analog M33i/l as antibiotics for local use in dentistry was evaluated. M33D and M33i/l were active against reference strains and multidrug-resistant clinical isolates of Gram-negative and Gram-positive species. Their minimum inhibitory concentration against different strains of dental interest was between 0.4 and 6.0 µM. Both peptides acted rapidly on bacteria, impairing membrane function. They also disrupted biofilm effectively. Disinfection of the root canal is crucial for endodontic treatments. M33D and M33i/l reduced E. faecalis colonies to one-twentieth in a dentin slices model reproducing root canal irrigation. They both captured and neutralized lipopolysaccharide (LPS), a bacterial toxin responsible for inflammation. The release of IL-1ß and TNFα by LPS-stimulated murine macrophages was reduced by both peptides. Human cardiac fibroblasts respond to different insults with the release of proinflammatory cytokines, and consequently, they are considered directly involved in atherogenic cardiovascular processes, including those triggered by infections. The presence of M33D and M33i/l at MIC concentration reduced IL6 release from LPS- stimulated human cardiac fibroblasts, hence proving to be promising in preventing bacteria-induced atherogenesis. The two peptides showed low toxicity to mammalian cells, with an EC50 one order of magnitude higher than the average MIC and low hemolytic activity. The development of antimicrobial peptides for dental irrigations and medication is a very promising new field of research that will provide tools to fight dental infections and their severe consequences, while at the same time protecting standard antibiotics from new outbreaks of antimicrobial resistance.

6.
7.
Cell Death Differ ; 29(1): 65-81, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34294890

RESUMEN

Ciliogenesis proteins orchestrate vesicular trafficking pathways that regulate immune synapse (IS) assembly in the non-ciliated T-cells. We hypothesized that ciliogenesis-related genes might be disease candidates for common variable immunodeficiency with impaired T-cell function (T-CVID). We identified a heterozygous, predicted pathogenic variant in the ciliogenesis protein CCDC28B present with increased frequency in a large CVID cohort. We show that CCDC28B participates in IS assembly by regulating polarized T-cell antigen receptor (TCR) recycling. This involves the CCDC28B-dependent, FAM21-mediated recruitment of the actin regulator WASH to retromer at early endosomes to promote actin polymerization. The CVID-associated CCDC28BR25W variant failed to interact with FAM21, leading to impaired synaptic TCR recycling. CVID T cells carrying the ccdc28b 211 C > T allele displayed IS defects mapping to this pathway that were corrected by overexpression of the wild-type allele. These results identify a new disease gene in T-CVID and pinpoint CCDC28B as a new player in IS assembly.


Asunto(s)
Inmunodeficiencia Variable Común , Actinas/genética , Inmunodeficiencia Variable Común/genética , Proteínas del Citoesqueleto , Humanos , Receptores de Antígenos de Linfocitos T/metabolismo , Sinapsis/metabolismo , Linfocitos T
8.
Pharmaceutics ; 15(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36678633

RESUMEN

Development of inhalable formulations for delivering peptides to the conductive airways and shielding their interactions with airway barriers, thus enhancing peptide/bacteria interactions, is an important part of peptide-based drug development for lung applications. Here, we report the construction of a biocompatible nanosystem where the antimicrobial peptide SET-M33 is encapsulated within polymeric nanoparticles of poly(lactide-co-glycolide) (PLGA) conjugated with polyethylene glycol (PEG). This system was conceived for better delivery of the peptide to the lungs by aerosol. The encapsulated peptide showed prolonged antibacterial activity, due to its controlled release, and much lower toxicity than the free molecule. The peptide-based nanosystem killed Pseudomonas aeruginosa in planktonic and sessile forms in a dose-dependent manner, remaining active up to 72 h after application. The encapsulated peptide showed no cytotoxicity when incubated with human bronchial epithelial cells from healthy individuals and from cystic fibrosis patients, unlike the free peptide, which showed an EC50 of about 22 µM. In vivo acute toxicity studies in experimental animals showed that the peptide nanosystem did not cause any appreciable side effects, and confirmed its ability to mitigate the toxic and lethal effects of free SET-M33.

9.
Biology (Basel) ; 10(10)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34681069

RESUMEN

The Ramazzottius varieornatus tardigrade is an extremotolerant terrestrial invertebrate with a length of 0.1-1.0 mm. These small animals show an extraordinary tolerance to extreme conditions such as high pressure, irradiation, chemicals and dehydration. These abilities are linked to a recently discovered damage suppressor protein (Dsup). Dsup is a nucleosome-binding protein that avoids DNA damage after X-ray and oxidative stress exposure without impairing cell life in Dsup-transfected animal and plant cells. The exact "protective" role of this protein is still under study. In human cells, we confirmed that Dsup confers resistance to UV-C and H2O2 exposure compared to untransfected cells. A different transcription factor activation was also observed. In addition, a different expression of endogenous genes involved in apoptosis, cell survival and DNA repair was found in Dsup+ cells after H2O2 and UV-C. In UV-C exposed cells, Dsup efficiently upregulates DNA damage repair genes, while H2O2 treatment only marginally involves the activation of pathways responsible for DNA repair in Dsup+ cells. These data are in agreement with the idea of a direct protective effect of the protein on DNA after oxidative stress. In conclusion, our data may help to outline the different mechanisms by which the Dsup protein works in response to different insults.

10.
J Cell Sci ; 134(16)2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34423835

RESUMEN

Components of the intraflagellar transport (IFT) system that regulates the assembly of the primary cilium are co-opted by the non-ciliated T cell to orchestrate polarized endosome recycling and to sustain signaling during immune synapse formation. Here, we investigated the potential role of Bardet-Biedl syndrome 1 protein (BBS1), an essential core component of the BBS complex that cooperates with the IFT system in ciliary protein trafficking, in the assembly of the T cell synapse. We demonstrated that BBS1 allows for centrosome polarization towards the immune synapse. This function is achieved through the clearance of centrosomal F-actin and its positive regulator WASH1 (also known as WASHC1), a process that we demonstrated to be dependent on the proteasome. We show that BBS1 regulates this process by coupling the 19S proteasome regulatory subunit to the microtubule motor dynein for its transport to the centrosome. Our data identify the ciliopathy-related protein BBS1 as a new player in T cell synapse assembly that functions upstream of the IFT system to set the stage for polarized vesicular trafficking and sustained signaling. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Síndrome de Bardet-Biedl , Cilios , Síndrome de Bardet-Biedl/genética , Polaridad Celular , Endosomas , Humanos , Proteínas Asociadas a Microtúbulos/genética , Sinapsis , Linfocitos T
11.
Front Cell Dev Biol ; 9: 673446, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34368126

RESUMEN

The Jurkat E6.1 clone has been extensively used as a powerful tool for the genetic and biochemical dissection of the TCR signaling pathway. More recently, these cells have been exploited in imaging studies to identify key players in immunological synapse (IS) assembly in superantigen-specific conjugates and to track the dynamics of signaling molecules on glass surfaces coated with activating anti-CD3 antibodies. By comparison, Jurkat cells have been used only scantily for imaging on supported lipid bilayers (SLBs) incorporating laterally mobile TCR and integrin ligands, which allow to study synaptic rearrangements of surface molecules and the fine architecture of the mature IS, likely due to limitations in the assembly of immune synapses with well-defined architecture. Here we have explored whether upregulating the low levels of endogenous LFA-1 expression on Jurkat E6.1 cells through transduction with CD11a- and CD18-encoding lentiviruses can improve IS architecture. We show that, while forced LFA-1 expression did not affect TCR recruitment to the IS, E6.1 LFA-1 high cells assembled better structured synapses, with a tighter distribution of signaling-competent TCRs at the center of the IS. LFA-1 upregulation enhanced protein phosphotyrosine signaling on SLBs but not at the IS formed in conjugates with SEE-pulsed APCs, and led to the constitutive formation of an intracellular phosphotyrosine pool co-localizing with endosomal CD3ζ. This was paralleled by an increase in the levels of p-ZAP-70 and p-Erk both under basal conditions and following activation, and in enhanced Ca2+ mobilization from intracellular stores. The enhancement in early signaling E6.1 LFA-1 high cells did not affect expression of the early activation marker CD69 but led to an increase in IL-2 expression. Our results highlight a new role for LFA-1 in the core architecture of the IS that can be exploited to study the spatiotemporal redistribution of surface receptors on SLBs, thereby extending the potential of E6.1 cells and their derivatives for fine-scale imaging studies.

12.
Front Cell Dev Biol ; 9: 634003, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33829015

RESUMEN

Lymphocyte homeostasis, activation and differentiation crucially rely on basal autophagy. The fine-tuning of this process depends on autophagy-related (ATG) proteins and their interaction with the trafficking machinery that orchestrates the membrane rearrangements leading to autophagosome biogenesis. The underlying mechanisms are as yet not fully understood. The intraflagellar transport (IFT) system, known for its role in cargo transport along the axonemal microtubules of the primary cilium, has emerged as a regulator of autophagy in ciliated cells. Growing evidence indicates that ciliogenesis proteins participate in cilia-independent processes, including autophagy, in the non-ciliated T cell. Here we investigate the mechanism by which IFT20, an integral component of the IFT system, regulates basal T cell autophagy. We show that IFT20 interacts with the core autophagy protein ATG16L1 and that its CC domain is essential for its pro-autophagic activity. We demonstrate that IFT20 is required for the association of ATG16L1 with the Golgi complex and early endosomes, both of which have been identified as membrane sources for phagophore elongation. This involves the ability of IFT20 to interact with proteins that are resident at these subcellular localizations, namely the golgin GMAP210 at the Golgi apparatus and Rab5 at early endosomes. GMAP210 depletion, while leading to a dispersion of ATG16L1 from the Golgi, did not affect basal autophagy. Conversely, IFT20 was found to recruit ATG16L1 to early endosomes tagged for autophagosome formation by the BECLIN 1/VPS34/Rab5 complex, which resulted in the local accumulation of LC3. Hence IFT20 participates in autophagosome biogenesis under basal conditions by regulating the localization of ATG16L1 at early endosomes to promote autophagosome biogenesis. These data identify IFT20 as a new regulator of an early step of basal autophagy in T cells.

13.
Cell ; 184(7): 1821-1835.e16, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33667349

RESUMEN

Human monoclonal antibodies are safe, preventive, and therapeutic tools that can be rapidly developed to help restore the massive health and economic disruption caused by the coronavirus disease 2019 (COVID-19) pandemic. By single-cell sorting 4,277 SARS-CoV-2 spike protein-specific memory B cells from 14 COVID-19 survivors, 453 neutralizing antibodies were identified. The most potent neutralizing antibodies recognized the spike protein receptor-binding domain, followed in potency by antibodies that recognize the S1 domain, the spike protein trimer, and the S2 subunit. Only 1.4% of them neutralized the authentic virus with a potency of 1-10 ng/mL. The most potent monoclonal antibody, engineered to reduce the risk of antibody-dependent enhancement and prolong half-life, neutralized the authentic wild-type virus and emerging variants containing D614G, E484K, and N501Y substitutions. Prophylactic and therapeutic efficacy in the hamster model was observed at 0.25 and 4 mg/kg respectively in absence of Fc functions.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Antivirales/administración & dosificación , Linfocitos B/inmunología , COVID-19 , Convalecencia , Células 3T3 , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/aislamiento & purificación , Linfocitos B/citología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/terapia , Chlorocebus aethiops , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Fragmentos Fc de Inmunoglobulinas/inmunología , Masculino , Ratones , Glicoproteína de la Espiga del Coronavirus/inmunología , Células Vero
14.
Antibiotics (Basel) ; 9(12)2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33255172

RESUMEN

The peptide SET-M33 is a molecule synthesized in tetra-branched form which is being developed as a new antibiotic against Gram-negative bacteria. Its isomeric form with D amino acids instead of the L version (SET-M33D) is also able to kill Gram-positive bacteria because of its higher resistance to bacterial proteases (Falciani et al., PLoS ONE, 2012, 7, e46259). Here we report the strong in vitro activity of SET-M33D (MIC range 0.7-6.0 µM) against multiresistant pathogens of clinical interest, including Gram-positives Staphylococcus aureus, Staphylococcus saprophyticus, and Enterococcus faecalis, and various Gram-negative enterobacteriaceae. SET-M33D antibacterial activity is also confirmed in vivo against a MRSA strain of S. aureus with doses perfectly compatible with clinical use (5 and 2.5 mg/Kg). Moreover, SET-M33D strongly neutralized lipopolysaccharide (LPS) and lipoteichoic acid (LTA), thus exerting a strong anti-inflammatory effect, reducing expression of cytokines, enzymes, and transcription factors (TNF-α, IL6, COX-2, KC, MIP-1, IP10, iNOS, NF-κB) involved in the onset and evolution of the inflammatory process. These results, along with in vitro and in vivo toxicity data and the low frequency of resistance selection reported here, make SET-M33D a strong candidate for the development of a new broad spectrum antibiotic.

15.
J Med Chem ; 63(24): 15997-16011, 2020 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-33284606

RESUMEN

Heparan sulfate proteoglycans take part in crucial events of cancer progression, such as epithelial-mesenchymal transition, cell migration, and cell invasion. Through sulfated groups on their glycosaminoglycan chains, heparan sulfate proteoglycans interact with growth factors, morphogens, chemokines, and extracellular matrix (ECM) proteins. The amount and position of sulfated groups are highly variable, thus allowing differentiated ligand binding and activity of heparan sulfate proteoglycans. This variability and the lack of specific ligands have delayed comprehension of the molecular basis of heparan sulfate proteoglycan functions. Exploiting a tumor-targeting peptide tool that specifically recognizes sulfated glycosaminoglycans, we analyzed the role of membrane heparan sulfate proteoglycans in the adhesion and migration of cancer cell lines. Starting from the observation that the sulfated glycosaminoglycan-specific peptide exerts a different effect on adhesion, migration, and invasiveness of different cancer cell lines, we identified and characterized three cell migration phenotypes, where different syndecans are associated with alternative signaling for directional cell migration.


Asunto(s)
Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Glipicanos/metabolismo , Proteoglicanos de Heparán Sulfato/farmacología , Neoplasias/patología , Sindecanos/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Transducción de Señal , Células Tumorales Cultivadas
16.
Int J Mol Sci ; 21(21)2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33167372

RESUMEN

The process of heparan sulfate proteoglycan (HSPG) internalization has been described as following different pathways. The tumor-specific branched NT4 peptide has been demonstrated to bind HSPGs on the plasma membrane and to be internalized in tumor cell lines. The polycationic peptide has been also shown to impair migration of different cancer cell lines in 2D and 3D models. Our hypothesis was that HSPG endocytosis could affect two important phenomena of cancer development: cell migration and nourishment. Using NT4 as an experimental tool mimicking heparin-binding ligands, we studied endocytosis and trafficking of HSPGs in a triple-negative human breast cancer cell line, MDA-MB-231. The peptide entered cells employing caveolin- or clathrin-dependent endocytosis and macropinocytosis, in line with what is already known about HSPGs. NT4 then localized in early and late endosomes in a time-dependent manner. The peptide had a negative effect on CDC42-activation triggered by EGF. The effect can be explained if we consider NT4 a competitive inhibitor of EGF on HS that impairs the co-receptor activity of the proteoglycan, reducing EGFR activation. Reduction of the invasive migratory phenotype of MDA-MB-231 induced by NT4 can be ascribed to this effect. RhoA activation was damped by EGF in MDA-MB-231. Indeed, EGF reduced RhoA-GTP and NT4 did not interfere with this receptor-mediated signaling. On the other hand, the peptide alone determined a small but solid reduction in active RhoA in breast cancer cells. This result supports the observation of few other studies, showing direct activation of the GTPase through HSPG, not mediated by EGF/EGFR.


Asunto(s)
Adenocarcinoma/metabolismo , Endocitosis/fisiología , Proteoglicanos de Heparán Sulfato/metabolismo , Imagen Molecular/métodos , Péptidos/química , Neoplasias de la Mama Triple Negativas/metabolismo , Adenocarcinoma/patología , Cationes , Movimiento Celular , Femenino , Humanos , Microscopía Fluorescente , Péptidos/farmacocinética , Transporte de Proteínas , Neoplasias de la Mama Triple Negativas/patología , Células Tumorales Cultivadas
17.
Amino Acids ; 52(6-7): 915-924, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32556741

RESUMEN

The tumor-specific tetrabranched peptide NT4 binds membrane sulfate glycosaminoglycans and receptors belonging to the low density lipoprotein receptor-related protein (LRP) family, like LRP6, which are overexpressed in cancer. The binding occurs through a multimeric positively-charged motif of NT4 that interacts with negatively charged motives in both glycosaminoglycans and LRP receptors. LRP6 has an essential function in canonical Wnt signaling, acting together with receptors of the Frizzled family as coreceptor for Wnt ligands. The extracellular domain of LRP6 contains four YWTD ß-propellers, which are fundamental for interactions with ligands, such as Wnt and Wnt inhibitors. To investigate the molecular interactions between the NT4 peptide and LRP6 receptor, we synthesized a library of epitope mapping peptides reproducing the YWTD ß-propeller 3 and 4 of LRP6. The peptides that showed to bind NT4 represented the portion of LRP6 located on the top face of ß-propeller 3 and contained negatively charged residues, including glutamic acid-708 which is known to be involved in Wnt3a interaction. The results pave the way for a possible development of peptide inhibitors of Wnt3a pathway to be used as drugs in oncology.


Asunto(s)
Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Neurotensina/metabolismo , Humanos , Ligandos , Neurotensina/análogos & derivados , Neurotensina/síntesis química , Resonancia por Plasmón de Superficie/métodos , Vía de Señalización Wnt
18.
Molecules ; 25(5)2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32121130

RESUMEN

The development of selective tumor targeting agents to deliver multiple units of chemotherapy drugs to cancer tissue would improve treatment efficacy and greatly advance progress in cancer therapy. Here we report a new drug delivery system based on a tetrabranched peptide known as NT4, which is a promising cancer theranostic by virtue of its high cancer selectivity. We developed NT4 directly conjugated with one, two, or three units of paclitaxel and an NT4-based nanosystem, using NIR-emitting quantum dots, loaded with the NT4 tumor-targeting agent and conjugated with paclitaxel, to obtain a NT4-QD-PTX nanodevice designed to simultaneously detect and kill tumor cells. The selective binding and in vitro cytotoxicity of NT4-QD-PTX were higher than for unlabeled QD-PTX when tested on the human colon adenocarcinoma cell line HT-29. NT4-QD-PTX tumor-targeted nanoparticles can be considered promising for early tumor detection and for the development of effective treatments combining simultaneous therapy and diagnosis.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Neoplasias del Colon/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Paclitaxel , Péptidos , Puntos Cuánticos , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Células HT29 , Humanos , Paclitaxel/química , Paclitaxel/farmacología , Péptidos/química , Péptidos/farmacología , Puntos Cuánticos/química , Puntos Cuánticos/uso terapéutico
19.
Int J Nanomedicine ; 15: 1117-1128, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32110011

RESUMEN

INTRODUCTION: Antibiotic-resistant bacteria kill 25,000 people every year in the EU. Patients subject to recurrent lung infections are the most vulnerable to severe or even lethal infections. For these patients, pulmonary delivery of antibiotics would be advantageous, since inhalation can achieve higher concentration in the lungs than iv administration and can provide a faster onset of action. This would allow for the delivery of higher doses and hence reduce the number of treatments required. We report here about a new nanosystem (M33-NS) obtained by capturing SET-M33 peptide on single-chain dextran nanoparticles. SET-M33 is a non-natural antimicrobial peptide synthesized in branched form. This form gives the peptide resistance to degradation in biological fluids. SET-M33 has previously shown efficacy in vitro against about one hundred of Gram-negative multidrug and extensively drug-resistant clinical isolates and was also active in preclinical infection models of pneumonia, sepsis and skin infections. METHODS: The new nanosystem was evaluated for its efficacy in bacteria cells and in a mouse model of pneumonia. Toxicity and genotoxicity were also tested in vitro. Biodistribution and pharmacokinetic studies in healthy rats were carried out using a radiolabeled derivative of the nanosystem. RESULTS: The M33-nanosystem, studied here, showed to be effective against Pseudomonas aeruginosa in time-kill kinetic experiments. Cytotoxicity towards different animal cell lines was acceptable. Lung residence time of the antimicrobial peptide, administered via aerosol in healthy rats, was markedly improved by capturing SET-M33 on dextran nanoparticles. M33-NS was also efficient in eradicating pulmonary infection in a BALB/c mouse model of pneumonia caused by P. aeruginosa. DISCUSSION: This study revealed that the encapsulation of the antimicrobial peptide in dextran nanoparticles markedly improved lung residence time of the peptide administered via aerosol. The result has to be considered among the aims of the development of a new therapeutic option for patients suffering recurrent infections, that will benefit from high local doses of persistent antimicrobials.


Asunto(s)
Antibacterianos/administración & dosificación , Nanopartículas/administración & dosificación , Péptidos/administración & dosificación , Infecciones por Pseudomonas/tratamiento farmacológico , Administración por Inhalación , Animales , Antibacterianos/farmacología , Dextranos , Sistemas de Liberación de Medicamentos/métodos , Femenino , Humanos , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Nanopartículas/química , Péptidos/síntesis química , Péptidos/farmacología , Neumonía Bacteriana/tratamiento farmacológico , Pseudomonas aeruginosa/efectos de los fármacos , Ratas , Terapia Respiratoria , Distribución Tisular
20.
FASEB J ; 34(1): 192-207, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914681

RESUMEN

The peptide sequence KKIRVRLSA was synthesized in a dimeric structure (SET-M33DIM) and evaluated as a candidate drug for infections due to multidrug-resistant (MDR) Gram-negative pathogens. SET-M33DIM showed significant antibacterial activity against MDR strains of Klebsiella pneumoniae, Acinetobacter baumannii, and Escherichia coli (Minimal Inhibitory Concentration [MICs], 1.5-11 µM), and less activity against Pseudomonas aeruginosa (MICs, 11-22 µM). It showed very low toxicity in vitro, ex vivo, and in vivo; in cytotoxicity tests, its EC50 was as much as 22 times better than that of SET-M33, a peptide with the same amino-acid sequence, but synthesized in tetra-branched form (638 vs 28 µM). In in vivo and ex vivo experiments, SET-M33DIM cleared P. aeruginosa infection, significantly reducing signs of sepsis in animals, and restoring cell viability in lung tissue after bacterial challenge. It also quelled inflammation triggered by LPS and live bacterial cells, inhibiting expression of inflammatory mediators in lung tissue, cultured macrophages, and bronchial cells from a cystic fibrosis patient.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Péptidos/síntesis química , Péptidos/farmacología , Neumonía Bacteriana/tratamiento farmacológico , Infecciones por Pseudomonas/tratamiento farmacológico , Animales , Antibacterianos/síntesis química , Farmacorresistencia Bacteriana Múltiple , Femenino , Huésped Inmunocomprometido , Lipopolisacáridos , Pulmón/microbiología , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Neumonía Bacteriana/microbiología , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa , Células RAW 264.7 , Pruebas de Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA